مطالعه اثر میدان مغناطیسی بر زبری سطح قطعهکار در ماشینکاری تخلیه الکتریکی ماده مرکب آلومینیوم 413 تقویت شده با آلومینا
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیداحمدرضا میزبانی 1 , سیداحسان میرمحمدصادقی 2 , علی مختاریان 3
1 - گروه مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران
2 - گروه مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران
3 - گروه مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران
کلید واژه: میدان مغناطیسی, زبری سطح, نسبت سیگنال به نویز, آنالیز واریانس, ماشین کاری تخلیه الکتریکی,
چکیده مقاله :
در این پژوهش، تأثیر پارامترهای ورودی ماشینکاری تخلیه الکتریکی بر روی زبری سطح قطعهکار از جنس ماده مرکب A413 تقویت شده با %5/2 Al2O3، در دو حالت با حضور میدان مغناطیسی و بدون وجود میدان مغناطیسی مورد بررسی و مقایسه قرار گرفته است. تحقیق ارائه شده با رویکرد طراحی آزمایشات به روش تاگوچی بر مبنای آرایه متعامد L9 و تکنیک سطوح تکراری به انجام رسیده است. پارامترهای ورودی این آزمایشات شامل ولتاژ (دو سطحی)، شدتجریان (سه سطحی)، زمان روشنی پالس (سه سطحی) و زمان خاموشی پالس (سه سطحی) در نظر گرفته شده است. نتایج آزمایشات نشان دهنده کاهش زبری سطح ماشینکاری شده تا 32 درصد در حضور میدان مغناطیسی می باشد. تحلیل نتایج شامل تعیین نمودارهای نسبت سیگنال به نویز متناظر با هر یک از پارامترهای ورودی و آنالیز واریانس توسط نرمافزار Minitab صورت گرفته است. نتایج بدست آمده گویای بهبود کیفیت سطح قطعهکار در حضور میدان مغناطیسی در مقایسه با شرایط ماشینکاری بدون وجود میدان مغناطیسی است. همچنین برمبنای نتایج حاصل از آنالیز واریانس در هر دو حالت مذکور، شدت جریان مؤثرترین پارامتر ورودی بر روی زبری سطح قطعهکار از جنس ماده مرکب A413 تقویت شده با %5/2 Al2O3، تعیین شده است.
In this research, the effect of electric discharge machining input parameters on the surface roughness of A413 composite reinforced with 2.5% Al2O3, in two cases with the presence of a magnetic field and without a magnetic field was investigated and compared. The research presented with Taguchi experiment design approach which is based on L9 orthogonal array and iterative surface technique. The input parameters of these experiments include voltage (two levels), current intensity (three levels), pulse on-time (three levels) and pulse off-time (three levels). Experiments results show machined surface roughness reduction in presence of magnetic field up to 32 percent. The analysis of the results included the determination of signal-to-noise ratio diagrams corresponding to each of the input parameters and analysis of variance by Minitab software. The results show that the surface quality of the workpiece improves in the presence of a magnetic field compared to machining conditions without a magnetic field. Also, based on the results of analysis of variance in both cases, the current intensity is the most effective input parameter on the surface roughness of the workpiece made of A413 composite reinforced with 2.5% Al2O3.
مراجع
[1] ف. بیغال، " روشهای ماشینکاری مدرن"، انتشارات طراح، چاپ ششم، 1389.
[2] D. Naderi & E. Ghasemi, "Fundamentals of machining using spark and wire cut", Tarrah publication, 2009.
[3] A. Erden & S. Bilgin, "Role of impurities in electric discharge machining", in: 21st Conference of Machine Tool Design and Research, London, pp. 345-350, 1980.
[4] H. K. Kansal, S. Singh & P. Kumara, "EDM drilling optimization using stochastic techniques", Procedia CIRP, vol. 67, no, 1, pp. 350-355, 2018.
[5] Q. Y. Ming & L. Y. He, "Thermographic analysis of spark location distribution in sinking EDM", Procedia CIRP, vol. 68, pp. 280-285, 2018.
[6] ه. فتاحی و ع. پاک، " بررسی فرآیند ماشینکاری تخلیه الکتریکی به کمک امواج فراصوتی با استفاده از مخلوط نانو پودرهای اکسید تیتانیوم، اکسید روی و اکسید آلومینیوم در دیالکتریک"، نشریه مهندسی مکانیک امیرکبیر، دوره 50، شماره 3، صفحه 550-541، 1397.
[7] S. S. Sidhu, A. Batish & S. Kumar, "Improving EDM performance by adapting gap servo-voltage to machining state", Journal of Manufacturing Processes, vol. 37, pp. 101-113, 2019.
[8] B. Mohan, A. Rajadurai & K. G. Satyanarayana, "Study on micro reciprocated wire-EDM for complex indexing structure", Procedia CIRP, vol. 68, pp. 120-125, 2018.
[9] P. Kuppan, A. Rajadurai & S. Narayanan, "Pulse efficiency and gap status of rotary ultrasonic assisted electrical discharge machining and EDM milling", Procedia CIRP, vol. 68, pp. 783-788, 2018.
[10] A. Dev, K. M. Patel, P. M. Pandey & S. Aravindan, "Multi-characteristics optimization in EDM of NiTi alloy, NiCu alloy and BeCu alloy using Taguchi’s approach and utility concept", Alexandria engineering journal, vol. 57, no, 4, pp. 2807-2817, 2018.
[11] ع. ا. لطفی نیستانک و س. دانشمند، "ﺑﺮرﺳﯽ ماشینکاری تخلیه الکتریکی ماده مرکب آلومینیوم تقویت شده با نانو ذرات اکسید تیتانیوم"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 13، شماره 2، صفحه 27-43، تابستان 1398.
[12] K. D. Chattopadhyay, P. S. Satsangi, S. Verma & P. C. Sharma, "Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system", The International Journal of Advanced Manufacturing Technology, vol. 38, no, 9, pp. 925-937, 2008.
[13] A. Gholipoor, H. Baseri, M. Shakeri & M. Shabgard, "Investigation of the effects of magnetic field on near-dry electrical discharge machining performance", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, no, 4, pp. 744-751, 2016.
[14] A. Gupta & S. S. Joshi, "Modelling effect of magnetic field on material removal in dry electrical discharge machining", Plasma Science and Technology, vol. 19, no, 2, pp. 1-10, 2017.
[15] Z. Zhang, H. Yu, Y. Zhang, K. Yang, W. Li, Z. Chen & G. Zhang, "Analysis and optimization of process energy consumption and environmental impact in electrical discharge machining of titanium superalloys", Journal of Cleaner Production, vol. 198, pp. 833-846, 2018.
[16] A. H. Rouniyar & P. Shandilya, "Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 233, no, 12, pp. 2283-2291, 2019.
[17] C. C. Feng, L. Li, C. S. Zhang, G. M. Zheng, X. Bai & Z. W. Niu, "Surface characteristics and hydrophobicity of Ni-Ti alloy through magnetic mixed electrical discharge machining", Materials, vol. 12, no, 3, pp. 388, 2019.
[18] M. R. Shabgard, A. Gholipoor & M. Mohammadpourfard, "Investigating the effects of external magnetic field on machining characteristics of electrical discharge machining process, numerically and experimentally", The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 55–65, 2019.
[19] H. Beravala & P. M. Pandey, "Modelling of material removal rate in the magnetic field and air-assisted electrical discharge machining", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234, no, 7, pp. 1286-1297, 2020.
[20] S. Kumar, M. Goud & N. M. Suri, "Experimental investigation of magnetic-field-assisted electric discharge machining by silicon-based dielectric of Inconel 706 superalloy", Sādhanā, vol. 45, no, 253, pp. 1-8, 2020.
[21] A. K. Rouniyar & P. Shandilya, "Experimental investigation on recast layer and surface roughness on aluminum 6061 alloy during magnetic field assisted powder mixed electrical discharge machining", Journal of Materials Engineering and Performance, vol. 29, pp. 7981–7992, 2020.
[22] M. Y. Khan, P. S. Rao & B. S. Pabla, "An experimental study on magnetic field-assisted-EDM process for Inconel-625", Advances in Materials and Processing Technologies, pp.1-27, 2022.
[23] S. S. Zabihi, H. Soleimanimehr, S. E. Haghighi & A. Maghsoudpour, "Design and Fabrication of Magnetic Field System for Improving EDM Process", Advanced Journal of Science and Engineering, vol. 3, no, 1, pp.55-64, 2022.
[24] T. R. Ablyaz, P. S. Bains, S. S. Sidhu, K. R. Muratov & E. S. Shlykov, "Impact of magnetic field environment on the EDM performance of Al-SiC metal matrix composite", Micromachines, vol. 12, no, 5, pp.469, 2021.
[25] S. Kumar, M. Goud & N. M. Suri, "An investigation of magnetic-field-assisted EDM by silicon and boron based dielectric of Inconel 706", Silicon, vol. 13, no, 12, pp.4747-4755, 2021.
[26] M. Shahbazi Dastjerdi, A. Mokhtarian & P. Saraeian, "The effect of alumina powder in dielectric on electrical discharge machining parameters of aluminum composite A413-Al2O3 by the Taguchi method, the signal-to-noise analysis and the total normalized quality loss", International Journal of Mechanical and Materials Engineering, vol. 15, no, 1, pp.1-11, 2020.
[27] A. Data, "NADCA product specification standards for die castings", Arlingt. Height. NADCA, 2003.
[28] ب. مسعودی و س. دانشمند، "ﺑﺮرﺳﯽ تأثیر ﭘﺎراﻣﺘﺮﻫﺎی ماشینکاری تخلیه الکتریکی، بر روی ماده مرکب پایه آلومینیوم 2024 با استفاده از تحلیل مقدار کل نرمال شده پارامترها (TNQL) و نسبت سیگنال به نویز (S/N)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 1، صفحه 110-91، 1396.
[29] R. K. Roy, "A primer on the Taguchi method", Society of Manufacturing Engineers (SME), 2010.
[30] Y.C. Lin, H.S. Lee, "Machining characteristics of magnetic force-assisted EDM", International journal of machine tools and manufacture, vol. 48, no, 11, pp.1179-1186, 2008.
[31] H. Qiang, H. Yong & Z. Wansheng, "Research of two-dimension EDM spark locations detection using electromagnetic method", Measurement, vol. 31, no, 2, pp.117-122, 2002.
[32] Y. C. Lin, F. P. Chuang, A. Wang & H. M. Chow, "Machining characteristics of hybrid EDM with ultrasonic vibration and assisted magnetic force", International journal of precision engineering and manufacturing, vol. 15, no, 6, pp.1143-1149, 2014.
[33] G. Bhatt, A. Batish & A. Bhattacharya, "Experimental investigation of magnetic field assisted powder mixed electric discharge machining", Particulate Science and Technology, vol. 33, no, 3, pp.246-256, 2015.
_||_