سنتز با روش سونوشیمی نانوکامپوزیت سولفیدروی-اکسیدآهن دوپ شده با یوروپیوم با عملکرد فتوکاتالیستی بالا در حذف آلاینده آلی رنگی
محورهای موضوعی : سنتز موادشیرین کلانتری 1 , علی شکوه فر 2
1 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
2 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
کلید واژه: نانوکامپوزیت, فتوکاتالیست, دوپنت یوروپیوم, اکسیدآهن, سولفیدروی,
چکیده مقاله :
در این تحقیق هدف سنتز نانوکامپوزیتی با خاصیت فتوکاتالیستی بالا و قابلیت جدایش مغناطیسی به ترتیب به منظور تخریب آلاینده آلی و استفاده مجدد است. بدین ترتیب نانوکامپوزیت سولفیدروی-اکسیدآهن دوپ شده با یوروپیوم با روش سونوشیمی سنتز شد که روشی آسان و کم هزینه است. فتوکاتالیست بعد از آماده سازی با روش های آنالیز پراش سنجی پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی نشر میدانی (FE-SEM)، طیف سنجی پراکندگی انرژی پرتو ایکس (EDS)، طیف سنجی فوتولومینسانس (PL)، طیف نورسنج UV ارزیابی شد. قابلیت جدایش مغناطیسی فتوکاتالیست در حضور آهنربا بررسی شد و درصد بالایی از فتوکاتالیست جذب آهنربا شد، بنابراین قابلیت استفاده مجدد امکان پذیر می باشد. عملکرد فتوکاتالیستی در حضور نانوکامپوزیت سنتز شده برای تخریب رنگ ردامین-بی تحت نور UV-C و مرئی بررسی شد، نتایج بازده تخریب 81% و 78% به ترتیب در حضور لامپ UV-C بعد از 3 ساعت تابش و لامپ مرئی بعد از 1 ساعت تابش را نشان داد. به علاوه آزمایش پایداری و استفاده مجدد نشان داد که نانوکامپوزیت همچنان بعد از 3 سیکل ظرفیت فتوکاتالیستی خود را حفظ می کند.
The purpose of this research is synthesis of nanocomposite with high photocatalyst property and magnetic separation ability in order to degradation of organic pollutants and reusability, respectively. Therefore, Eu doped ZnS - Fe3O4 nanocomposite is synthesized via sonochemical method which this method is easy and low cost. The synthesized photocatalyst is investigated with X-ray Diffraction Pattern (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Photoluminescence Spectroscopy (PL), UV-Vis Spectrophotometry. As a consequence of testing the capability of magnetic separation, the high amount of photocatalyst attracted by the magnet guarantees the property of recyclability. Photocatalytic application in presence of synthesized nanocomposite for degradation of Rhodamine-B dye under UV-C and visible lamp is studied and results showed 81% and 78% degradation efficiency under UV-C lamp for 3 hours and visible lamp for 1 hour, respectively. In addition, stability and reuse investigation showed that the nanocomposite still remains its photocatalytic capacity after 3 cycles test.
1] M. Nikzad, M. R. Khanlary & S. Rafiee, "Structural, optical and morphological properties of Cu‑doped ZnS thin films synthesized by sol–gel method", Applied Physics A, vol. 125, 507, pp. 1-9, 2019.
[2] D. Yu, H. Fang, P. Qiu, F. Meng, H. Liu, Sh. Wang, P. Lv, X. Cong, Q. Niu & T. Li, "Improving the Performance of ZnS Photocatalyst in Degrading Organic Pollutants by Constructing Composites with Ag2O", Nanomaterials, vol. 11, 1451, pp. 1-11, 2021.
[3] ا. محقق پور، ف. مضطرزاده، م. ربیعی، س. ح. علوی، م. عاشوری، م. راز و م. ر. تحریری، "سنتز و مشخصهیابی نانوکریستالهای سولفیدروی دوپ شده با منگنر (ZnS:Mn) جهت شناسایی آویدین بهعنوان جزء بیولوژیکی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 8، شماره 4، صفحه 13-21، 1393.
[4] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando & D. Golberg, 'ZnS nanostructures: From synthesis to applications", Progress in Materials Science, vol. 56, pp. 175–287, 2011.
[5] J. Zhu & M. Zäch, "Nanostructured materials for photocatalytic hydrogen production", Current Opinion in Colloid & Interface Science, vol. 14, pp. 260–269, 2009.
[6] S. K. Maji, A. K. Dutta, D. N. Srivastava, P. Paul, A. Mondal & B. Adhikary, "Effective photocatalytic degradation of organic pollutant by ZnS nanocrystals synthesized via thermal decomposition of single-source precursor", Polyhedron, vol. 30, pp. 2493–2498, 2011.
[7] N. Bao, L. Shen, T. Takata, & Kazunari Domen, "Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light", Chemistry of Materials, vol. 20, pp. 110–117, 2008.
[8] K. Maeda, N. Nishimura & K. Domen, "A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light", Applied Catalysis A: General, vol. 370, pp. 88–92, 2009.
[9] N. S. Karan, D. D. Sarma, R. M. Kadam & N. Pradhan, "Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals", The Journal of Physical Chemistry Letters, vol. 1, pp. 2863-2866, 2010.
[10] M. Ni, M. K. H. Leung, D. Y. C. Leung & K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renewable and Sustainable Energy Reviews, vol. 11, pp. 401–425, 2007.
[11] A. Kudo & Y. Miseki, "Heterogeneous photocatalyst materials for water splitting", Chemical Society Reviews, vol. 38, pp. 253–278, 2009.
[12] N. Soltani, E. Saion, W. M. M. Yunus, M. Erfani, M. Navasery, Gh. Bahmanrokh & K. Rezaee, "Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating", Applied Surface Science, vol. 290, pp. 440– 447, 2014.
[13] G. J. Lee & J. J. Wu, "Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications— A review", Powder Technology, vol. 318, pp. 8-22, 2017.
[14] P. Mishra, S. Patnaik & K. Parida, "An overview of recent progresses on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution", Catalysis Science & Technology, vol. 9, pp. 916-941, 2019.
[15] J. L. Lopes, K. L. Marques, A. V. Girão, E. Pereira & T. Trindade, "Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles", Journal of Colloid and Interface Science, vol. 475, pp. 96–103, 2016.
[16] P. K. Jain, X. Huang, I. H. El-Sayed & M. A. El-Sayed, "Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems", Plasmonics, vol. 2, pp. 107–118, 2007.
[17] H. Zhao, L. Zhang, X. Gu, Sh. Li, B. Li, H. Wang, J. Yang & J. Liu, "Fe2O3–AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts", RSC Advances, vol. 5, pp. 10951–10959, 2015.
[18] X. Dongdong, L. Xiaoni, L. Juan & H. Langhuan, "Synthesis and photocatalytic performance of europium-doped graphitic carbon nitride", Journal of Rare Earths, vol. 31, No. 11, pp. 1085-1091, 2013.
[19] M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senila, O. Marincas & L. B. Tudoran, "Magnetic recoverable Fe3O -TiO2:Eu composite nanoparticles with enhanced photocatalytic activity", Applied Surface Science, vol. 390, pp. 248–259, 2016.
[20] ح. یوسفی و ب. هاشمی، "سنتز نانوذرات اکسید روی دوپ شده توسط نقره به روش سل-ژل پکینی و مشخصهیابی و بررسی خواص فتوکاتالیستی آنها"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 12، شماره 4، صفحه 67-79، 1397.
[21] M. B. Tahir, G. Nabi, N.R. Khalid & M. Rafique, "Role of europium on WO3 performance under visible-light for photocatalytic activity", Ceramics International, vol. 44, pp. 5705-5709, 2018.
[22] P. Shandilya, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, A. Rahmani-Sani, V. Thakur & A. K. Saini, "Synthesis of Eu3+- doped ZnO/Bi2O3 heterojunction photocatalyst on graphene oxide sheets for visible light-assisted degradation of 2,4-dimethyl phenol and bacteria killing", Solid State Sciences, vol. 102, pp. 106164-106172, 2020.
[23] G. Mancuso, M. Langone, M. Laezza & G. Andreottola, "Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl", Ultrasonics Sonochemistry, vol. 32, pp. 18–30, 2016.
[24] H. Karimi, H. R. Rajabi & L. Kavoshi, "Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: A comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots", Journal of Photochemistry & Photobiology A: Chemistry, vol. 397, pp. 112534-112543, 2020.
[25] H. R. Pouretedal, A. Norozi, M. H. Keshavarz & A. Semnani, "Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes", Journal of Hazardous Materials, vol. 162, pp. 674–681, 2009.
[26] N. Aini, S. Rachman, A. Maunatin & A. Syarifah, "Synthesis, Characterization and Antibacterial Activity of Silver Doped TiO2 Photocatalyst", International Conference on Biology and Applied Science (ICOBAS), 050017, pp.1-6, 2019.
[27] S. Rashidi Dafeh, P. Iranmanesh & P. Salarizadeh, "Fabrication, optimization, and characterization of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ZnS core/shell magnetic nanoparticles: Ready for biomedicine applications", Materials Science & Engineering C, vol. 98, pp. 205-212, 2019.
[28] D. K. Mondal, G. Phukan, N. Paul & J. P. Borah, "Improved self heating and optical properties of bifunctional Fe3O4/ZnS nanocomposites for magnetic hyperthermia application", Journal of Magnetism and Magnetic Materials, vol. 528, pp. 167809-167816, 2021.
[29] S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain & H. Manuspiya, "Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder", Solid State Sciences, vol. 14, pp. 299-304, 2012.
[30] G. Palanisamy, K. Bhuvaneswari, A. Chinnadurai, G. Bharathi & T. Pazhanivel, "Magnetically recoverable multifunctional ZnS/Ag/CoFe2O4 nanocomposite for sunlight driven photocatalytic dye degradation and bactericidal application", Journal of Physics and Chemistry of Solids, vol. 138, pp. 109231, 2020.
[31] K. Patel, M. P. Deshpande & S. H. Chaki, "Effect of Ag on structural, optical and luminescence properties of ZnS nanoparticles synthesized by microwave-assisted chemical route", Applied Physics A, vol. 123, pp. 367-372, 2017.
_||_