بررسی ریزساختار و مقاومت به رفتگی پوشش ZrC اعمال شده با روشهای پاشش پلاسمایی اتمسفری (APS) و پاشش پلاسمایی با غلاف جامد/ گاز محافظ (SSPS) روی زیر لایه گرافیتی با پوشش SiC
محورهای موضوعی : خوردگی و حفاظت مواداکبر اسحاقی 1 , ضیاء والفی 2 * , ناصر احسانی 3
1 - دانشجوی دکتری رشته مهندسی مواد، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر تهران، ایران.
2 - دانشیار، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر تهران، ایران.
3 - استاد، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر تهران، ایران.
کلید واژه: گرافیت, پاشش پلاسمایی با غلاف جامد/گاز محافظ (SSPS) پوشش ZrC, مقاومت به رفتگی,
چکیده مقاله :
در این تحقیق، پوشش کاربید زیرکونیم (ZrC) با روشهای پاشش پلاسمایی اتمسفری (APS) و پاشش پلاسمایی با غلاف جامد و گاز محافظ (SSPS) روی زیر لایهی گرافیتی (دارای پوشش SiC) اعمال شد. ریزساختار پوششهای اعمال شده با استفاده از میکروسکوپ الکترونی روبشی (SEM) و پراش اشعه ایکس (XRD) مورد بررسی قرار گرفت. آزمون رفتگی پوششها با استفاده از شعله مافوق صوت و به مدتزمان 60 ثانیه روی پوششها انجام شد. نتایج آزمون رفتگی نشان میدهند که اعمال پوشش ZrC موجب بهبود مقاومت به رفتگی گرافیت شده است. نرخهای جرمی و خطی رفتگی پوشش ZrC اعمال شده با روش APS به ترتیب g.s-13-10× 22 و mm.s-13-10×7/3 و برای روش SSPS به ترتیب g.s-13-10× 14 و mm.s-13-10×2/2 حاصل گردید. دلیل مقاومت به رفتگی مناسب این پوششها علاوه بر بالا بودن دمای ذوب و استحکام بالای پوشش ZrC، تشکیل اکسیدهای ZrO2 و SiO2 در حین آزمون رفتگی میباشد. تشکیل لایههای اکسیدی مانع تماس مستقیم شعله داغ با سطح زیر لایه و موجب کاهش ورود اکسیژن به زیر لایه میشود. همچنین به دلیل کیفیت بالاتر پوششهای ZrC اعمال شده با روش SSPS در مقایسه با روش APS و عیوب کمتر این پوششها از جمله حفره و ریزترکها،ZrO2 تشکیل شده در حین آزمون رفتگی نیز پایدارتر و مقاومت به رفتگی آن بالاتر است.
In this paper ZrC coating was prepared on SiC coated graphite as a substrate by atmospheric plasma spray (APS) and solid shielding/ shrouded plasma spray (SSPS) methods. Microstructure observation and phase identification of the coatings were performed by scanning electron microscopy and X-ray diffraction. The ablation behavior of the coating was evaluated under supersonic flame for 60s. The results showed that the ZrC coating enhance the ablation resistance of SiC coated graphite remarkably. The results of ablation test revealed that the linear and mass ablation rates of the ZrC coating applied by APS method were 3.7×10-3 mm.s-1 and 22×10-3 g.s-1, while those for SSPS coating were 2.2×10-3 mm.s-1 and 14×10-3 g.s-1, respectively. The excellent ablation resistance is attributed to the formation of continuous zirconia (ZrO2) layer on the surface during the oxidation of the ZrC coating. Moreover, the SPS-ZrC coated sample with lowest pores and cracks have better ablation resistance during the ablation test and can protected the graphite substrate against ablation sufficiently.
[1] ع. گلشنی عجبشیر و همکاران، "پوششدهی نانوذرات کاربید سیلیسیم (SiC) بر روی کامپوزیت کربن ـ کربن به روش رسوبدهی الکتروفورتیک (EPD)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 3، صفحه 103-111، 1395.
[2] C. Hu, X. Ge, Y. Niu, H. Li, L. Huang, X. Zheng & J Sun,"Influence of Oxidation Behavior of Feedstock on Microstructure and Ablation Resistance of Plasma-Sprayed Zirconium Carbide Coating", Journal of Thermal Spray Technology, vol. 24, no. 7, pp. 1302-1311, 2015.
[3] D. J. Yao, H. J. Li, H. Wu, Q. G. Fu & X. F. Qiang, "Ablation resistance of ZrC/SiC gradient coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying", Journal of the European Ceramic Society, vol. 36, no. 15, pp. 3739-3746, 2016.
[4] Y. Jia, H. Li, Q. Fu, Z. Zhao & J. Sun, "Ablation resistance of supersonic-atmosphere-plasma-spraying ZrC coating doped with ZrO2 for SiC-coated carbon/carbon composites", Corrosion Science, vol. 123, pp. 40-54, 2017.
[5] A. Abdollahi, N. Ehsani & Z. Valefi, "High temperature ablation-oxidation performance of SiC nanowhisker toughened-SiC/ZrB2-SiC ultra-high temperature multilayer coatings under supersonic flame", Journal of Alloys and Compounds, vol. 745, pp. 798-809, 2018.
[6] H. Wu, H. Li, Q. Fu, D. Yao, Y. Wang, C. Ma, J. Wei & Z. Han," Microstructures and ablation Resistance of ZrC Coating for SiC-Coated Carbon/Carbon Composites Prepared by Supersonic Plasma Spraying", Journal of Thermal Spray Technology, vol. 20, no. 6, 1286-1291, 2011.
[7] B. Chen, L. Zhang, L. Cheng & X. Luan, "Viscous Flow of Silica and its Effects on Ablation of Carbon/Silicon Carbide Composites as a Liquid-Fueled Rocket Engine Nozzle", Applied ceramic Technology, vol. 8, no. 6, 1468–1474, 2011.
[8] T. Liu, Y. Niu, C. Li, X. Pan, M. Shi, X. Zheng & C. Ding, "Ablation resistance of ZrC-MoSi2/ZrC-SiC double-layered coating in a plasma flame", Corrosion Science, vol. 145, pp. 239-248, 2018.
[9] ج. پوراسد و همکاران، "نقش پایه گرافیتی بر تشکیل ساختار گرادیان ترکیبی C/SiC طی فرایند سمانتاسیون تودهای"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 1، صفحه 91-98، 1395.
[10] A. Abdollahi, N. Ehsani & Z. Valefi, "Thermal shock resistance and isothermal oxidation behavior of C/SiCSiCnano functionally gradient coating on graphite produced via reactive melt infiltration (RMI)", Materials Chemistry and Physics, vol. 182, pp. 49-61, 2016.
[11] B. Feng, H. Li, Y. Zhang, L. Liu & M. Yan, "Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C–SiC–ZrC composites", Corrosion Science, vol. 82, pp. 27–35, 2014.
[12] H. M. Chen, Y. Xiang, S. Wang, F. Zheng, L. B. Liu & Z. P. Jin, "Thermodynamic assessment of the C–Si–Zr system", Journal of Alloys and Compounds, vol. 474, pp. 76–80, 2009.
[13] J. Xie, Y. Jia, Z. Zhao, K. Li, G. Sun, H. Li & X. Su, "A ZrC-SiC/SiC multilayer anti-ablation coating for ZrC modified C/C composites", Vaccum, vol. 157, pp. 324-331, 2018.
[14] T. Liu, L. Zheng & H.Zhang, "Effect of Solid Shield on Coating Properties in Atmospheric Plasma Spray Process", Journal of Thermal Spray Technology, vol. 25, pp. 1502-1515, 2016.
[15] D. J. Yao, H. J. Li, H. Wu, Q. G. Fu & X. F. Qiang, "Ablation resistance of ZrC/SiC gradient coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying", Journal of the European Ceramic Society, vol. 36, no. 15, pp. 3739-3746, 2016.
[16] S.Bose, "High temperature coatings: Butterworth-Heinemann publications", 2011.
[17] J. Ilavsky, A. J. Allen, G. G. Long, S. Krueger, C. C. Berndt & H. Herman, "Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits", Journal of the American Ceramic Society, vol. 80, no. 3, pp. 733-742, 1997.
[18] M. Erfanmanesh, S. Bakhshi, M. Khajelakzay & M. Salekbafghi, "The effect of argon shielding gas at plasma spray process on the structure and properties of MoSi2 coating", Ceramics International, vol. 40, pp. 4529-4533, 2014.
[20] Y. Zeng, S. W. Lee, L. Gao & C. X. Ding, "Atmospheric plasma sprayed coatings of nanostructured zirconia", Journal of the European Ceramic Society, vol. 22, no. 3, pp. (2002
[20] J. Zhang & V. Desai, "Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy", Surface and Coatings Technology, vol. 190, no. 1, pp. 98-109, 2005.
_||_