اصلاح ریزساختار و بهبود خواص مکانیکی آلیاژ منیزیم AZ91 با استفاده از فرآیند اصطکاکی همزدنی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدحسن جیریائی شراهی 1 , مجید پورانوری 2 , مجتبی موحدی 3
1 - دانشجوی کارشناسی ارشد، مهندسی مواد و متالورژی، دانشگاه صنعتی شریف، تهران، ایران
2 - دانشیار، گروه مهندسی مواد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران
3 - دانشیار، گروه مهندسی مواد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران
کلید واژه: خواص مکانیکی, فرآیند اصطکاکی همزدنی, آلیاژ ریختگی پایه منیزیم AZ91, اصلاح ریزساختاری,
چکیده مقاله :
آلیاژهای منیزیم، به عنوان سبکترین آلیاژها با کاربرد سازهای، به دلیل نسبت استحکام به وزن بالا پتانسیل قابل توجهی برای بهبود راندمان انرژی در سیستمهای مختلف حملونقل دارند. در این پژوهش، تاثیر فرآیند اصطکاکی همزدنی (FSP) بر ریزساختار و خواص مکانیکی آلیاژ ریختگی AZ91 بررسی شده است. نشان داده شد که FSP قادر به حذف ساختار دندریتی، کاهش قابل توجه اندازه دانه، شکستن و انحلال جزئی فاز درشت بتا و تشکیل ترکیبات بین فلزی بتا با اندازه زیرِمیکرون میباشد. این اصلاحات ریزساختاری منجر به افزایش خواص مکانیکی شامل استحکام کششی و قابلیت جذب انرژی تا شکست به ترتیب؛ به میزان 48% و 283% نسبت به حالت ریختگی شده است. نشان داده شد که FSP می تواند منجر به تغییر مکانیزم شکست آلیاژ ریختگی از حالت شکست حاکم-تورقیِ ترد به شکست حاکم-دیمپلیِ نرم شود که این منجر به افزایش قابلیت اطمینان به قطعه، در کاربردهای حساس میشود؛ بنابراین میتوان نتیجه گرفت که FSP به عنوان یک فرآیند با قابلیت تغییر فرم پلاستیک شدید در دمای بالا، پتانسیل بالایی در بهبود ریزساختار و خواص مکانیکی آلیاژهای منیزیم ریختگی را دارد.
Magnesium alloys, as the lightest structural alloys, due to their high strength-to-weight ratio offer significant potential for improving energy efficiency of various transportation systems. This paper addresses the influence of friction stir processing (FSP) treatment on the microstructure and mechanical properties of cast AZ91 Mg alloy. It is demonstrated that FSP treatment enables elimination of dendritic structure, significant grain refining, break-up and partial dissolution of coarse β and formation of ultra-fine sub-micron Mg17Al12 particles. These microstructural modifications resulted in enhancement of mechanical properties in terms of tensile strength and energy absorption by 48% and 283%, respectively. It is shown that FSP treatment altered the failure mechanism of the alloy from brittle cleavage-dominant mode to ductile dimple-dominant mode which can increase the potential of Mg alloys to use in safety-critical application. Therefore, it can be concluded that FSP, as a process of sever plastic deformation at high temperature, has a great potential to tailor the microstructure and enhancing the mechanical properties of cast Mg alloys.
[1] ا. عبداله زاده، ع. شکوه فر، ح. امیدوار، م. ص. خانیان و م. ر. نادری، "بررسی تاثیر افزودن نانو ذرات کاربید سیلیسیم بر خواص مکانیکی آلیاژ منیزیم AZ31 جوشکاری شده به روش اصطکاکی اغتشاشی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 4، 1395.
[2] Kim, N. "Critical Assessment 6: Magnesium sheet alloys: viable alternatives to steels?" Materials Science and Technology, vol. 30, no. 15, pp. 1925-1928, 2014.
[3] T. Trang, J. Zhang, J. Kim, A. Zargaran, J. Hwang, B.-C. Suh & N. Kim. "Designing a magnesium alloy with high strength and high formability", Nature communications, vol. 9, no. 1, pp. 2522, 2018.
[4] T. Trang, J. Zhang, J. Kim, A. Zargaran, J. Hwang, B.-C. Suh & N. Kim. "Designing a magnesium alloy with high strength and high formability", Nature communications, vol. 9, no. 1, pp. 2522, 2018.
[5] A. A. Luo, "Recent magnesium alloy development for elevated temperature applications", International materials reviews, vol. 49, no. 1, pp. 13-30, 2004.
[6] T. Trang, J. Zhang, J. Kim, A. Zargaran, J. Hwang, B.-C. Suh & N. Kim. "Designing a magnesium alloy with high strength and high formability", Nature communications, vol. 9, no. 1, pp. 2522, 2018.
[7] B. Mordike, & T. Ebert, "Magnesium: properties—applications—potential", Materials Science and Engineering, vol. 302, no. 1, pp. 37-45, 2001.
[8] م. پاکشیر، ر. مدحت و خ. مرشد بهبهانی، "بررسی و مقایسه رفتار خوردگی آلیاژ منیزیم AZ91 ریختگی و تغییر فرم یافته به روش اکستروژن برشی ساده"، فصلنامه علمی پژوهشی فرآیندهای نوین ئر مهندسی مواد، شماره 2، 1394.
[9] P. Cavaliere, & P. De Marco, "Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast", Journal of materials processing technology, vol. 184, no. 1-3, pp. 77-83, 2007.
[10] K. Fuse, & V. Badheka, "Bobbin tool friction stir welding: a review", Science and Technology of Welding and Joining, vol. 24, no. 4, 277-304, 2019.
[11] R. S. Mishra & Z. Ma, "Friction stir welding and processing", Materials science and engineering: R: reports, vol. 50, no, 1-2, pp. 1-7, 2005.
[12] ا. بهرامی، م. شمعانیان و ح. ادریس، "تولید کامپوزیت درجا آلومینیوم - نیکل بر سطح آلیاژ آلومینیوم 2024 با استفاده از فرآیند اصطکاکی اغتشاشی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، 1395.
[13] W, Yuan, S. K. Panigrahi & R. S. Mishra, "Achieving high strength and high ductility in friction stir-processed cast magnesium alloy", Metallurgical and Materials Transactions A, vol. 44, no. 8, pp. 3675-3684, 2013.
[14] T. Freeney, & R. Mishra, "Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium–rare earth alloy", Metallurgical and materials transactions A, vol. 41, no. 1, pp. 73, 2010.
[15] A. Feng & Z. Ma, "Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging", Acta Materialia, vol. 57, no, 14, pp. 4248-4260, 2009.
[16] K. Máthis, J. Gubicza & N. Nam, "Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing", Journal of Alloys and Compounds, vol. 394, no. 1-2, pp. 194-199, 2005.
[17] W. Kim, J. Park & W. Kim, "Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy", Journal of Alloys and Compounds, vol. 460, no. 1-2, pp. 289-293, 2008.
[18] M. Mabuchi, Y. Chino, H. Iwasaki, T. Aizawa & K. Higashi, "The grain size and texture dependence of tensile properties in extruded Mg-9Al-1Zn", Materials Transactions, vol. 42, no. 7, pp. 1182-1188, 2001.
[19] M. T. Pérez-Prado, J. Del Valle & O. A. Ruano, "Achieving high strength in commercial Mg cast alloys through large strain rolling", Materials letters, vol. 59, no. 26, pp. 3299-3303, 2005.
[20] B. Chen, D. L. Lin, L. Jin, X. Q. Zeng & C. Lu, "Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties", Materials Science and Engineering: vol. 483, pp. 113-116, 2008.
[21] S. Khani, M. Aboutalebi, M. Salehi, H. Samim & H. Palkowski, "Microstructural development during equal channel angular pressing of as-cast AZ91 alloy", Materials Science and Engineering, vol. 678, pp. 44-56, 2016.
[22] F. Chai, D. Zhang & Y. Li, "Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy", Journal of Magnesium and Alloys, vol. 3, pp. 203–209, 2015.
[23] M. Dadashpour, R. Yeşildal, A. Mostafapour & V. Rezazade, "Effect of heat treatment and number of passes on the microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy", Journal of Mechanical Science and Technology, vol. 30, pp. 667-672, 2016.
[24] S. Rouhi, A. Mostafapour & M. Ashjari, "Effects of welding environment on microstructure and mechanical properties of friction stir welded AZ91C magnesium alloy joints", Science and Technology of Welding and Joining, vol. 21, pp. 25-31, 2016.
[25] F. Chai, D. T. Zhang & Y. Y. Li, "Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy", Material Research Innovations, vol. 18, no. S4, pp. 152-156, 2014.
[26] D. Ahmadkhaniha, M. Heydarzadeh Sohi & A. Zarei-Hanzaki, "Optimisation of friction stir processing parameters to produce sound and fine grain layers in pure magnesium", Science and Technology of Welding and Joining, vol. 19, no. 3, pp. 235-241, 2014.
[27] Processing of As-Cast Magnesium AZ91. "Materials Science Forum" 916: 239-243.
[28] "Parameters of FSW process on the microstructural evolution & mechanical properties of AZ80A Mg alloy joints", FME Transactions, vol. 46, no. 1, pp. 23-32.
[29] E8/E8M − 15a, "Standard Test Methods for Tension Testing of Metallic Materials", DOI: 10.1520/E0008_E0008M-15A. 2015.
[30] E 112 – 10, "Standard Test Methods for Determining Average Grain Size", DOI: 10.1520/E0112-10. 2010.
[31] A. Maltais, D. Dube, F. Roy & M. Fiset, "Optical anisotropy of a color-etched AZ91 magnesium alloy", Materials characterization, vol. 54, no. 4-5, pp. 315-326, 2005.
[32] A. Maltais, D. Dube, M. Fiset, G. Laroche & S. Turgeo, "Improvements in the metallography of as-cast AZ91 alloy", Materials Characterization, vol. 52, no. 2, pp. 103-119, 2004.
[33] A. Feng & Z. Ma, "Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing", Scripta materialia, vol. 56, no. 5, pp. 397-400, 2007.
[34] X. Chai, T. Yuan & S. Kou, "Liquation and liquation cracking in partially melted zones of magnesium welds", Weld, J, vol. 9, 2016.
[35] "Microstructure in Magnesium–Aluminium alloy", Journal of light metals, vol. 1, no. 1, pp. 61-72.
[36] M. Ohno, D. Mirkovic & R. Schmid-Fetzer, "Liquidus and solidus temperatures of Mg-rich Mg–Al–Mn–Zn alloys", Acta Materialia, vol. 54, no. 15, 3883-3891, 2006.
[37] B. Hassani, F. Karimzadeh, M. H. Enayati, S. Sabooni & R. Vallan, "Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone", Journal of Materials Engineering and Performance, vol. 25, no. 7, pp. 2776-2785. 2016.
[38] B. Guan, Y. Xin, X. Huang, P. Wu & Q. Liu, "Quantitative prediction of texture effect on Hall–Petch slope for magnesium alloys", Acta Materialia, vol. 173, pp. 142-152, 2019.
_||_