سنتز سبز نانوکامپوزیت مغناطیسی Fe3O4/SiO2/ZnMn2O4 با عصاره گیاه آلوئهورا و کاربرد آن به عنوان کاتالیزگر در واکنش نورتابی شیمیایی سیستم لومینول- H2O2
محورهای موضوعی : سنتز موادعباس اسلامی 1 , انسیه غلامرضاپور 2 , محمد جواد چایچی 3 , افسانه نعمتی 4
1 - دانشیار، شیمی معدنی، دانشکده شیمی، دانشگاه مازندران، بابلسر، ایران
2 - فارغالتحصیل دکتری، شیمی معدنی، دانشکده شیمی، دانشگاه مازندران، ایران
3 - استاد، شیمی تجزیه، دانشکده شیمی، دانشگاه مازندران، ایران
4 - دانشجوی دکتری، شیمی تجزیه، دانشکده شیمی، دانشگاه مازندران، ایران
کلید واژه: نانوکامپوزیت مغناطیسی, H2O2, سنتز سبز, لومینول, نورتابی شیمایی,
چکیده مقاله :
سنتز نانو ذرات اکسید فلزی با استفاده از جانداران ریز و گیاهان که با عنوان سنتز سبز شناخته میشود، به دلیل شرایط سنتزی آسان و ارزان در مقایسه با روشهای شیمیایی و فیزیکی متداول توجه زیادی را جلب کرده است. واکنش نورتابی شیمیایی لومینول به دلیل حساسیت بالا به حضور کاتالیزگر و سیگنال زمینه کم از روش های کمی شناخته شده در طیف سنجی تجزیهای است. در این تحقیق، نانوکامپوزیت مغناطیسی Fe3O4/SiO2/ZnMn2O4 با استفاده از عصاره گیاهیآلوئهورا تهیه شد و نمونههای سنتز شده با روش های طیف سنجی مادونقرمز تبدیل فوریه (FT-IR)، پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، طیف سنجی پخش انرژی پرتوایکس (EDS) و مغناطیسسنج نمونه مرتعش (VSM) شناسایی شدند. از این نانو ذرات مغناطیسی به عنوان کاتالیزگر در سیستم نورتابی شیمیایی لومینول- H2O2 استفاده شد. نتایج نشان داد که این نانو ذرات تأثیر کاتالیزی خوبی بر این سیستم نورتابی دارند به طوری که در حضور کاتالیزگر در مدتزمان 3 ثانیه شدت نورتابی شیمیایی 4 مرتبه افزایش یافت. بازیابی این کاتالیزگر بهآسانی با بهکارگیری میدان مغناطیسی خارجی قابل انجام است.
Synthesis of metal oxide nanoparticles using microorganisms and plants, so-called green synthesis methods, has received a great amount of attention because of its easy and inexpensive synthesis condition with respect to usual chemical and physical methods. The luminol chemiluminescent reaction is among well-known quantitative methods in analytical spectroscopy due to its high sensitivity to presence of catalyst and low background signal. In this study, Fe3O4/SiO2/ZnMn2O4 nanocomposite was prepared by the green method using Aloe Vera extract solution and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM). These magnetic nanoparticles were used as a catalyst in the luminol-H2O2 chemiluminescence system. The obtained results indicated that these nanoparticles have good catalytic activity in the chemiluminescence system so that the emission intensity was increased about fourfold in presence of catalyst at 3 second. The recovery of this catalyst was easily performed by an applying external magnetic field.
[1] Y. Shen, J. Tang, Z. Nie, Y. Wang, Y. Ren & L. Zuo, "Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification", Separation and purification technology, Vol. 68, pp. 312-319, 2009.
[2] J. Liu, G. Liu, L. Zang & W. Liu, "Calcein-functionalized Fe3O4@SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper(II) ion", Microchimica Acta, Vol. 182, pp. 547-555, 2015.
[3] S. Hou, X. Li, H. Wang, M. Wang, Y. Zhang, Y. Chi & Z. Zhao, "Synthesis of core–shell structured magnetic mesoporous silica microspheres with accessible carboxyl functionalized surfaces and radially oriented large mesopores as adsorbents for the removal of heavy metal ions", RSC Advances, Vol. 7, pp. 51993-52000, 2017.
[4] X. Peng, F. Xu, W. Zhang, J. Wang, C. Zeng, M. Niu & E. Chmielewská, "Magnetic Fe3O4@silica–xanthan gum composites for aqueous removal and recovery of Pb2+", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 443, pp. 27-36, 2014.
[5] M. Wolf, N. Fischer & M. Claeys, "Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design", Materials Chemistry and Physics, Vol. 213, pp. 305-312, 2018.
[6] M. Chen, S. Yamamuro, D. Farrell & S.A. Majetich, "Gold-coated iron nanoparticles for biomedical applications", Journal of Applied Physics, Vol. 93, pp. 7551-7553, 2003.
[7] C. Guo, W. Lu, G. Wei, L. Jiang, Y. Yu & Y. Hu, "Formation of 1D chain-like Fe3O4@C/Pt sandwich nanocomposites and their magnetically recyclable catalytic property", Applied Surface Science, Vol. 457, pp. 1136-1141, 2018.
[8] ف. قاسمی پیرانلو، ف. باورسیها و س. داداشیان، "ساخت میکروساختار هسته/پوسته/ پوسته Fe3O4/SiO2/TiO2 و بررسی خواص ساختاری آن"، فرایندهای نوین در مهندسی مواد، شماره 4، ص 143-150، زمستان 1396.
[9] U. Jeong, X. Teng, Y. Wang, H. Yang & Y. Xia, "Superparamagnetic colloids: controlled synthesis and niche applications", Advanced Materials, Vol. 19, pp. 33-60, 2007.
[10] E. Gholamrezapor & A. Eslami, "Sensitization of magnetic TiO2 with copper(II) tetrahydroxylphenyl porphyrin for photodegradation of methylene blue by visible LED light", Journal of Materials Science: Materials in Electronics, Vol. 30, pp. 4705-4715, 2019.
[11] O. V. Kharissova, H.R. Dias, B.I. Kharisov, B.O. Pérez & V.M.J. Pérez, "The greener synthesis of nanoparticles", Trends in biotechnology, Vol. 31, pp. 240-248, 2013.
[12] E. C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag & S.L. Suib, "Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts", Langmuir, Vol. 27, pp. 264-271, 2010.
[13] N. Ahmad, S. Sharma, M.K. Alam, V. Singh, S. Shamsi, B. Mehta & A. Fatma, "Rapid synthesis of silver nanoparticles using dried medicinal plant of basil", Colloids and Surfaces B: Biointerfaces, Vol. 81, pp. 81-86, 2010.
[14] J. Kasthuri, S. Veerapandian & N. Rajendiran, "Biological synthesis of silver and gold nanoparticles using apiin as reducing agent", Colloids and Surfaces B: Biointerfaces, Vol. 68, pp. 55-60, 2009.
[15] S. Panigrahi, S. Kundu, S. Ghosh, S. Nath & T. Pal, "General method of synthesis for metal nanoparticles", Journal of Nanoparticle Research, Vol. 6, pp. 411-414, 2004.
[16] M. F. Zayed, W. H. Eisa & A. Shabaka, "Malva parviflora extract assisted green synthesis of silver nanoparticles", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 98, pp. 423-428, 2012.
[17] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad & M. Sastry, "Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract", Biotechnology progress, Vol. 22, pp. 577-583, 2006.
[18] N.M. Juibari & A. Eslami, "Synthesis of nickel oxide nanorods by Aloe vera leaf extract", Journal of Thermal Analysis and Calorimetry, Vol. 136, pp. 913-923, 2018.
[19] T. Liu, L. Wang, P. Yang & B. Hu, "Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate", Materials Letters, Vol. 62, pp. 4056-4058, 2008.
[20] Y. Li, L.-B. Kong, M.-C. Liu, W.-B. Zhang & L. Kang, "One-step synthesis of micro/nano flower-like Ni3V2O8 as anode for Li-ion batteries", Materials Letters, Vol. 186, pp. 289-292, 2017.
[21] H. Wu, G. Wu, Y. Ren, X. Li & L. Wang, "Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism", Chemistry–A European Journal, Vol. 22, pp. 8864-8871, 2016.
[22] W. Ma, S. Chen, S. Yang, W. Chen, Y. Cheng, Y. Guo, S. Peng, S. Ramakrishna & M. Zhu, "Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors", Journal of Power Sources, Vol. 306, pp. 481-488, 2016.
[23] G. Yue, Y. Zhao, C. Wang, X. Zhang, X. Zhang & Q. Xie, "Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries", Electrochimica Acta, Vol. 152, pp. 315-322, 2015.
[24] H. Wu, G. Wu & L. Wang, "Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties", Powder Technology, Vol. 269, pp. 443-451, 2015.
[25] S.-H. Wei & S. Zhang, "First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO4 and AIVB2IIO4 spinel oxides", Physical Review B, Vol. 63, pp. 045112, 2001.
[26] F. M. Courtel, H. Duncan, Y. Abu-Lebdeh & I.J. Davidson, "High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A= Co, Ni, and Zn)", Journal of Materials Chemistry, Vol. 21, pp. 10206-10218, 2011.
[27] Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang & Y. Qian, "Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries", Nanoscale, Vol. 5, pp. 2442-2447, 2013.
[28] F. M. Courtel, Y. Abu-Lebdeh & I.J. Davidson, "ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries", Electrochimica Acta, Vol. 71, pp. 123-127, 2012.
[29] L. Zhao, X. Li & J. Zhao, "Fabrication, characterization and photocatalytic activity of cubic-like ZnMn2O4", Applied Surface Science, Vol. 268, pp. 274-277, 2013.
[30] A. Sahoo & Y. Sharma, "Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material", Materials Chemistry and Physics, Vol. 149, pp. 721-727, 2015.
[31] R. Gherbi, Y. Bessekhouad & M. Trari, "Optical and transport properties of Sn-doped ZnMn2O4 prepared by sol–gel method", Journal of Physics and Chemistry of Solids, Vol. 89, pp. 69-77, 2016.
[32] N. M. Juibari & A. Eslami, "Green synthesis of ZnCo2O4 nanoparticles by Aloe albiflora extract and its application as catalyst on the thermal decomposition of ammonium perchlorate", Journal of Thermal Analysis and Calorimetry, Vol. 130, pp. 1327-1333, 2017.
[33] T. H. Fereja, A. Hymete & T. Gunasekaran, "A recent review on chemiluminescence reaction, principle and application on pharmaceutical analysis", Isrn Spectroscopy, Vol. 2013, pp. 1-13, 2013.
[34] T. G. Burdo & W.R. Seitz, "Mechanism of cobalt catalysis of luminol chemiluminescence", Analytical Chemistry, Vol. 47, pp. 1639-1643, 1975.
[35] D. T. Bostick & D.M. Hercules, "Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminol", Analytical Chemistry, Vol. 47, pp. 447-452, 1975.
[36] E. Schneider, "Chemiluminescence of luminol catalyzed by iron complex salts of chlorophyll derivatives", Journal of the American Chemical Society, Vol. 63, pp. 1477-1478, 1941.
[37] A. Bee, R. Massart & S. Neveu, "Synthesis of very fine maghemite particles", Journal of Magnetism and Magnetic Materials, Vol. 149, pp. 6-9, 1995.
[38] X. Guo, Y.-Y. Li, D.-H. Shen, Y.-Y. Song, X. Wang & Z.-G. Liu, "Immobilization of cobalt porphyrin on CeO2@SiO2 core–shell nanoparticles as a novel catalyst for selective oxidation of diphenylmethane", Journal of Molecular Catalysis A: Chemical, Vol. 367, pp. 7-11, 2013.
[39] N. M. Juibari & A. Eslami, "Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate", Journal of Thermal Analysis and Calorimetry, Vol. 128, pp. 115-124, 2017.
[40] H. El Ghandoor, H. Zidan, M.M. Khalil & M. Ismail, "Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles", Int. J. Electrochem. Sci, Vol. 7, pp. 5734-5745, 2012.
[41] X. Zhu, Z. Wei, W. Zhao, X. Zhang, L. Zhang & X. Wang, "Microstructure and electrochemical properties of ZnMn2O4 nanopowder synthesized using different surfactants", Journal of Electronic Materials, Vol. 47, pp. 6428-6436, 2018.
[42] C. Vakh, A. Pochivalov, A. Podurets, N. Bobrysheva, O. Osmolovskaya & A. Bulatov, "Tin oxide nanoparticles modified by copper as novel catalysts for the luminol–H2O2 based chemiluminescence system", Analyst, Vol. 144, pp. 148-151, 2019.
[43] H. Chen, F. Gao, R. He & D. Cui, "Chemiluminescence of luminol catalyzed by silver nanoparticles", Journal of Colloid and Interface Science, Vol. 315, pp. 158-163, 2007.
[44] Z.-F. Zhang, H. Cui, C.-Z. Lai & L.-J. Liu, "Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications", Analytical Chemistry, Vol. 77, pp. 3324-3329, 2005.
[45] A. Alipour, M.M. Lakouraj, R. Ojani, M.N. Roudbari, M.J. Chaichi & A. Nemati, "Electrochemical and chemiluminescence properties of polyaniline/pectin hybrid nanocomposites based on graphene and CdS nanoparticles", Polymer Testing, Vol. 76, pp. 490-498, 2019.
_||_