مطالعه خواص فیزیکی و مکانیکی پلیاورتان تقویت شده با نانوذرات تیتانیا
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدصاحبعلی منافی 1 * , مهدی طلایی 2
1 - مدیرگروه مهندسی مواد
2 - کارشناس ارشد، گروه مهندسی مواد، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، سمنان، ایران
کلید واژه: ", خواص مکانیکی", , "نانوذرات تیتانیا", "پراکندهساز", "پلیاورتان", "فتوکاتالیست",
چکیده مقاله :
در این پژوهش به بررسی اثر اضافه کردن نانوذرات تیتانیا به پلیاورتان پرداخته شده است و اثرات مکانیکی و شیمیایی آن مورد ارزیابی قرار گرفته است. نانوذرات اضافه شده به ترتیب با درصد وزنی 1/0، 5/0، 1 و 2 درصد وزنی بوده و اثر ساختارهای آناتاز و روتایل بررسی شدهاند. پس از مخلوط کردن نانوذرات تیتانیا با رنگ پلیاورتان، مواد حاصله را به مدت h 2 با همزن آلتراسونیک، h 3 با همزن معمولی و سپس به مدت یک ساعت با همزن آلتراسونیک مخلوط کرده و در آخر گاززدایی میشود. به خاطر کاهش میزان آگلومره، از پراکندهساز متناسب با دستورالعمل شرکت سازنده استفاده شده است. نانوکامپوزیت به دست آمده به ضخامت µm 90 روی نمونهها اعمال میشود. نمونهها جهت آزمونهای مقاومت به اشعه UV و مقاومت شیمیایی و مکانیکی تحت آزمایش قرار میگیرند. نتایج به دست آمده نشان دهنده این مطلب است که با اضافه کردن 1/0 درصد نانوذرات روتایل بهترین خواص فیزیکی و مکانیکی و مقاومت به اشعه UV حاصل میشود. از میکروسکوپ نوری برای بررسی مقدار پراکندگی نانوذرات و از میکروسکوپ AFM برای بررسی مورفولوژی سطح، استفاده گردید. سختی سطح نمونهها و مقاومت به خراش، مقاومت به سایش و همچنین مقاومت به خوردگی آنها نیز مورد ارزیابی قرار گرفتند. نتایج نشان دهنده افزایش مقاومت به اشعه UV، پایداری بیشتر به ثابت ماندن رنگ، افزایش استحکام، سختی، مقاومت به خوردگی، مقاومت به خراشیدگی و افزایش طول عمر است و باعث کاهش هزینههای نگهداری و تعمیرات پوشش و همچنین کاهش آسیب به محیط زیست میشود.
Dispersion of nanotitan particles in polyurethane (PU) resin plays an important role to achievement better mechanical and physical properties. In this study nanocomposite coating was performed by incorporating nanotitania pigment with rutile and anatase phase in polyurethane to different loading level (0.1, 0.5, 1.0 and 2.0% by weight). Dispersion of nanoparticles in PU matrix was done by using ultrasonication mixing machine (2 h) and rotary mixer (3 h) and also again UT mixing machine (1 h) and finally gas removing. After addition of the appropriate amount of hardener, prepared nanocomposite coating was investigated by applying on steel and glass substrate and after 2weeks time for curing, exposing them to UV weathering, salt spray, scratch and hardness testing. The dispersion quality and surface morphology of nanocomposite coating was evaluated by using different analytical techniques. Dispersion quality of nanocomposite was investigated using optical microscopy. Dry film thickness (DFT) of samples was mostly in the range 90 µm. Roughness after exposing of naoncomposites on UV radiation and salt spray measurement by atomic force microscopy (AFM) topography and analysis by this apparatus and mechanical behavior also by using hardness and scratch test and also by colorimetry measurements, surface degradation of PU nanocomposite coatings was characterized by color changing, defined as the color measurement, after being exposed to accelerated weathering conditions.
[1] F. Liu, Y. Hao, Z. Wang, H. Shi, E. Han & W. Ke, “Flaking and degradation of polyurethane coatings after 2 years of outdoor exposure in Lhasa ”, Vol. 55, pp. 650-655, 2010.
[2] B. Ahmadi, M. Kassiriha, K. Khodabakhshi & E. R. Mafi, “Synthesis and evaluation of water-reducible acrylic–alkyd resins with high hydrolytic stability”, Prog. Org. Coat. Vol. 60, pp. 99–104, 2007.
[3] S. Zhou, L. Wu, W. Shen & G. Gu, “Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings”, J. Mater. Sci. Vol. 39, pp. 1593–1600. 2004.
[4] M. Matkovic, I. Cubric & Z. Skenderi, “Thermal resistance of polyurethane-coated knitted fabrics before and after weathering”, (Department of Textile Design and Management, Faculty of Textile Tech nology, University of Zagreb, Croatia), 2015.
[5] T. H. Lim, S. M. Jeong, S. D. Kim & J. Gyenis, “Photocatalytic decomposition of NO by TiO2 particles”, Journal of Photochemistry and Photobiology a-Chemistry, Vol. 3, pp. 209-217, 2000.
[6] E. Yousif & R. Haddad. “Photodegradation and photostabilization of polymers, especially polystyrene”, Springerplus, Vol. 2, pp. 398, 2013.
[7] D. Y. Perera, “Physical ageing of organic coatings”, Prog. Org. Coat., Vol. 47, pp. 61–76, 2003.
[8] M. M. Jalili & S. Moradian, “Deterministic performance parameters for an automotive polyurethane clearcoat loaded with hydrophilic or hydrophobic nano-silica”, Prog. Org. Coat., Vol. 66, pp. 359–366, 2009.
[9] G. Luciano, R. Leardi & P. Letardi, “Principal component analysis of colour measurements of patinas and coating systems for outdoor bronze monuments”, J. Cult. Heritage, Vol. 10, pp. 331–337, 2009.
[10] R. H. Caytonand & R. W. Brotzman Jr., “Nanocomposite coatings applications and properties,” In Materials Research Society Symposium Proceedings, Vol. 703, 2002.
[11] N. Negishi & K. T Akeuchi, “Preparation of TiO2 thin film photocatalysts by dip coating using a highly viscous solvent”, J. Sol-Gel Sci. Tech, Vol. 22, pp. 23-31, 2001.
[12] ف. مومنی و م. کاشفی تربتی، "بررسی اثر لایه نشانی دی اکسید تیتانیم (TiO2) بر عملکرد سلول خورشیدی حساس شده با رنگدانه (DSSC)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره دوم، صفحه 46-39، تابستان 1394.
[13] N. Barati & M. A. Faghihi Sani, “Coating of titania nanoparticles on stainless steel using an alkoxide precursor”, Prog. Color Colorants Coat, Vol. 2, pp. 71-78, 2009
[14] G. X. Shen, Y. C. Chen & C. J. Lin, “Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method”, Thin Solid Films, Vol. 489, pp. 130-136, 2005.
[15] M. Q. Zhang, M. Z. Rong, S. L. Yu, B. Wetzel & K. Friendrich, “Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites”, Vol. 253, pp. 1086–1093, 2002.
[16] ن. لاری، ش. آهنگرانی و ع. شانقی،"بررسی رفتار نوری پوششهای چندلایه کامپوزیت تیتانیا-سیلیکا اعمال شده با روش سل-ژل"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره چهارم، صفحه 173-163، زمستان 1394.
[17] ح. ر. فرنوش، "رفتار الکتروشیمیایی و چسبندگی پوششهای الکتروفورتیک نانوساختار HA-TiO2"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال دهم، شماره اول، صفحه 89-71، بهار 1395.
[18] Y. C. Jung, N. G. Sahoo & J. W. Cho, “Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers”. Macromolecular Rapid Communications, Vol. 2, pp. 126-131, 2006.
[19] C. Grant Willson, C. M. Bates, J. Strahan & C. J. Ellison, “Surface treatments for alignment of block copolymers”, (US 9120947 B2), 2015.
[20] S. M. Mirabedini, M. Mohseni, Sh. Pazokifard & M. Esfandeh, “Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings”, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 317, pp. 80–86, 2008.
[21] M. Z. Rong, M. Q. Zhang, H. B. Wang & H. M. Zeng, “Surface modification of magnetic metal nanoparticles through irradiation graft polymerization”, Appl. Surf. Sci., Vol. 200, pp. 76–93, 2002.
[22] Ch. Chen, M. Khobaib & D. Curliss, “Epoxy layered-silicate nanocomposites”, Prog. Org. Coat., Vol. 47, pp. 376–383, 2003.
[23] M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr & M. Atai, “Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating”, Prog. Org. Coat., Vol. 65, pp. 222–228, 2009
[24] T. Kemmitt, N. I. Al-Salim, M. Waterland, V. J. Kennedy & A. Markwitz, “Photocatalytic titania coatings”, Curr. Appl. Phys., Vol. 4, pp. 189–192, 2004.
[25] T. John & Jr. Yates, “Photochemistry on TiO2: mechanisms behind the surface chemistry”, Surf. Sci., Vol. 603, pp. 1605–1612, 2009.
[26] J. G. Yu, H. G. Yu, B. Cheng, M. Zhou & X. Zhao, “Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment”, J. Mol. Catal. A: Chem., Vol. 253, pp. 112–118, 2006.
[27] I. A. Siddiquey, T. Furusawa, M. Sato, K. Honda & N. Suzuki, “Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane”, Dyes Pigments, Vol. 76, pp. 754–759, 2008.
[28] K. D. Burgess, “self-cleaning titania-polyurethane composites”, (The University of Western Ontario London, Ontario, Canada), 2007.
[29] ASTM D1400, “Standard Test Method for Nondestructive Measurement of Dry Film Thickness of Nonconductive Coatings Applied to a Nonferrous Metal Base”, 2000.
[30] S. M. Mirabedini, M. Sabzi, J. Zoh uriaan-Mehr, M. Atai & M. Behzadnasab, “Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles”, (Colour, Resin & Surface Coatings Dept, Iran Polymer and Petrochemical Institute), 2010.
[31] ASTM D2244, “Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates”, 2010.
[32] ASTM G154, “Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials”, 2014.
[33] ASTM B117, “Standard Practice for Operating Salt Spray (Fog) Apparatus”, 2014.
[34] ASTM D4366, “Standard Test Methods for Hardness of Organic Coatings by Pendulum Damping Tests”, 2014.
[35] EasyScan 2 AFM, Operating Instructions, version 2.1, 2009.
[36] ASTM D5178, “Standard Test Method for Mar Resistance of Organic Coatings”, 2014.
[37] ASTM D2244, “Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates”, 2014.
[38] Z. Luo, H. Cai, J. Liu, W. Hong & S. Tang, “Preparation of TiO2 on the glass and hydrophilicity under sunlight irradiation”, Key Eng. Mater, Vol. 280–283, pp. 827–830, 2005.
[39] Lu. Ren, Y. I. Li, J. Hou, X. Zhao & C. Pan, “Preparation and Enhanced Photocatalytic Activity of TiO2 Nanocrystals with Internal Pores”, pp. 1608–1615, 2014.
[40] T. Bunhu, A. Kindness & B. S. Martincigh, “Determination of Titanium Dioxide in Commercial Sunscreens by Inductively Coupled Plasma–Optical Emission Spectrometry”, Vol. 64, pp. 139–143, 2011.
[41] I. A. Siddiquey, E. Ukaji, T. Furusawa, M. Sato & N. Suzuki, “The effects of organic surface treatment by methacryloxy propyltrimethoxy silane on the photostability of TiO2”, Mater. Chem. Phys., Vol. 105, pp. 162–168, 2007.
[42] N. Tissera, R. Perera, R. Wijesena, L. Karunanayake & A. de Alwis, “Nano titanium dioxide embedded nano fibers spun from electro spinning technology to produce stain removal and UV blocking nano fibers”, Vol. 1, 2012.
[43] S. K. Dhoke, R. Bhandari & A. S. Khanna, “Formulation of nano-ZnO incorporated silicone modified alkyd based waterborne coating and evaluation of its Mechanical and Heat resistance property”, Progress in Organic Coatings, Vol. 64, pp. 39-46, 2009.
[44] Kalendova, “Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings”, Progress in Organic Coatings, Vol. 46, pp. 324-332, 2003.
[45] H. Shi, F. Liu, E. Han & Y. Wei, “Effect of nano pigments on the corrosion resistance of alkyd coatings”, J. Mater. Sci. Technol, Vol. 23, pp. 551-558, 2007.
[46] S. D. Dhoke, N. Rajgopalan & A. S. Khanna, “Effect of Nano-Zinc Oxide Particles on the Performance Behavior of Waterborne Polyurethane Composite Coatings”, (S. K. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay 400076, India), 2012.
[47] S. K. Dhoke, N. Rajgopalan & A. S. Khanna, “Effect of Nanoalumina on the Electrochemical and Mechanical Properties of Waterborne Polyurethane Composite Coatings”, (Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India), 2013.
[48] M. Zaharesu, A. Barau, L. Predoana, M. Gartner, M. Anatasesuc & J. Mrazek, “TiO2-SiO2 Sol-Gel hybride films and their sensitivity to gaseous toluene”, J. Non-Cryst. Solids. Vol. 354, pp. 693-699, 2008.
[49] S. M. Al-Hilli & M. Willander, “Optical properties of zinc oxide nano-particles embedded in dielectric medium for UV region”, Numerical simulation, Journal of Nanoparticle Research, Vol. 8, pp. 79–97, 2006.
_||_