رسوب دهی الکتروشیمیایی هماتیت و بررسی خواص فتوالکتروشیمیایی آن جهت فرایند تجزیه آب و تولید هیدروژن
محورهای موضوعی : سنتز مواد
1 - دانشگاه صنعتی اسفراین
کلید واژه: تجزیه آب, رسوب دهی الکتروشیمیایی, هماتیت, فتوالکتروشیمی,
چکیده مقاله :
تولید هیدروژن با استفاده از تجزیه آب تحت نور خورشید یک روش امیدوار کننده برای تولید سوخت پاک و تجدیدپذیر میباشد. با استفاده از نیمه هادیهای مثبت و منفی به ترتیب به عنوان فتوکاتد و فتوآند میتوان آب را به عناصر تشکیل دهنده آن یعنی هیدروژن و اکسیژن تجزیه نمود. از هماتیت میتوان به عنوان فتوآند برای این منظور استفاده نمود. در این تحقیق هماتیت با استفاده از روش رسوبدهی الکتروشیمیایی ایجاد شده است. جهت تعیین فاز از تفرق اشعه ایکس استفاده شد که الگوی پراش بیانگر هماتیت با ساختار بلوری رومبوئدرال میباشد. مورفولوژی سطحی توسط میکروسکوپ الکترونی روبشی نشان دهندهی دو لایهی پایینی همراه با ترک و لایه بالایی بصورت ذرات میباشد. مقدار جریان تحت نور با استفاده از پتانسیل روبشی خطی تحت قطع و وصل نور مرئی تعیین شدند که در پتانسیل V6/0 نسبت به الکترود Ag/AgCl به مقدار μA.cm-2 5/2 بدست آمد. منحنی نایکوئیست هماتیت در پتانسیل V0 و V6/0 با استفاده از طیف سنجی امپدانس الکتروشیمیایی بدست آمد و مدار معادل آنها شبیه سازی گردید و مقدار پارامترهای مربوطه بدست آمدند. همچنین با استفاده از منحنی مات-شاتکی مقدار پتانسیل فلت باند و مقدار دانسیته حامل بار به ترتیب به مقدار V 35/0- نسبت به مرجع Ag/AgCl و cm-3 1018×4/8 بدست آمدند.
Production of hydrogen using photoelectrochemical water splitting is a promising method for production of clean and renewable energy source. Using positive and negative semiconductors respectively as photocathode and photoanode, water can be splitted into hydrogen and oxygen. In this study, hematite was synthesized using electrochemical deposition. The diffraction pattern obtained using x-ray diffraction showed hematite having rhombohedral crystal structure. Surface morphology obtained by scanning electron microscope showed a two-layer structure, lower layer with cracks and upper layer consisting of particles. Photocurrent density was obtained using linear sweep voltammetry under chopped illumination and it was obtained at 0.6V vs Ag/AgCl as 2.5 μA.cm-2. Nyquist plot of hematite at potentials of 0V and 0.6V was obtained using electrochemical impedance spectroscopy and an equivalent circuit was fitted to EIS data and the value of the parameters was obtained. Also, using Mott-schottky plot, the flat band potential and the carrier density were obtained to be -0.35V vs Ag/AgCl and 8.4×1018 cm-3.
[1] P. V. Kamat, “Meeting the clean energy demand: nanostructure architectures for solar energy conversionˮ, The Journal of Physical Chemistry C, Vol. 111, pp. 2834-2860, 2007.
[2] S. A. Kalogirou, “Solar thermal collectors and applicationsˮ, Progress in Energy and Combustion Science, Vol. 30, pp. 231-295, 2004.
[3] R. Zakharchenko, L. Licea-Jimenez, S. Pérez-Garcıa, P. Vorobiev, U. Dehesa-Carrasco, J. Pérez-Robles, J. Gonzalez-Hernandez & Y. Vorobiev, “Photovoltaic solar panel for a hybrid PV/thermal systemˮ, Solar Energy Materials and Solar Cells, Vol. 82, pp. 253-261, 2004.
[4] ف. مومنی و م. کاشفی تربتی، "بررسی اثر روش لایه نشانی دیاکسید تیتانیوم (TiO2) بر عملکرد سلول خورشیدی حساس شده با رنگدانه (DSSC)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 9، صفحه 39-46، 1394.
[5] ا. اسحاقی، ف. مجیری، ا. کرمی و ا. ابراهیم زاده، "اثر اعمال نانو فیلم کربن شبه الماسی بر بازدهی سلولهای خورشیدی سیلیکونی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 9، صفحه 9-15، 1394.
[6] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori & N. S. Lewis, “Solar water splitting cellsˮ, Chemical Reviews, Vol. 110, pp. 6446-6473, 2010.
[7] G. Peharz, F. Dimroth & U. Wittstadt, “Solar hydrogen production by water splitting with a conversion efficiency of 18%ˮ, International Journal of Hydrogen Energy, Vol. 32, pp. 3248-3252, 2007.
[8] D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang, K. Zhang, L. Ma & P. Guo, “Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstrationˮ, International Journal of Hydrogen Energy, Vol. 35, pp. 7087-7097, 2010.
[9] A. Fujishima & K. Honda, “Electrochemical photolysis of water at a semiconductor electrodeˮ, Nature, Vol. 238, pp. 37-38, 1972.
[10] T. Mariño-Otero, M. Oliver-Tolentino, M. A. Aguilar-Frutis, G. Contreras-Martínez, E. Pérez-Cappe & E. Reguera, “Effect of thickness in hematite films produced by spray pyrolysis towards water photo-oxidation in neutral mediaˮ, International Journal of Hydrogen Energy, Vol. 40, pp. 5831-5836, 2015.
[11] M. J. Katz, S. C. Riha, N. C. Jeong, A. B. Martinson, O. K. Farha & J. T. Hupp, “Toward solar fuels: Water splitting with sunlight and “rust”?ˮ, Coordination Chemistry Reviews, Vol. 256, pp. 2521-2529, 2012.
[12] A. G. Tamirat, W. N. Su, A. A. Dubale, C. J. Pan, H. M. Chen, D. W. Ayele, J. F. Lee & B. J. Hwang, “Efficient photoelectrochemical water splitting using three dimensional urchin-like hematite nanostructure modified with reduced graphene oxideˮ, Journal of Power Sources, Vol. 287, pp. 119-128, 2015.
[13] C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin & V. A. Szalai, “Effect of tin doping on α-Fe2O3 photoanodes for water splittingˮ, The Journal of Physical Chemistry C, Vol. 116, pp. 15290-15296, 2012.
[14] D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel & D. R. Gamelin, “Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidationˮ, Energy & Environmental Science, Vol. 4, pp. 1759-1764, 2011.
[15] A. Annamalai, A. G. Kannan, S. Y. Lee, D. W. Kim, S. H. Choi & J. S. Jang, “Role of graphene oxide as a sacrificial interlayer for enhanced photoelectrochemical water oxidation of hematite nanorodsˮ, The Journal of Physical Chemistry C, Vol. 119, pp. 19996-20002, 2015.
[16] H. Miyake & H. Kozuka, “Photoelectrochemical Properties of Fe2O3− Nb2O5 Films Prepared by Sol− Gel Methodˮ, The Journal of Physical Chemistry B, Vol. 109, pp. 17951-17956, 2005.
[17] A. Duret & M. Grätzel, “Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysisˮ, The Journal of Physical Chemistry B, Vol. 109, pp. 17184-17191, 2005.
[18] Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang & T. Xie, “Highly photoactive Ti-doped α-Fe 2 O 3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splittingˮ, Electrochimica Acta, Vol. 129, pp. 358-363, 2014.
[19] J. Y. Zheng, S. I. Son, T. K. Van & Y. S. Kang, “Preparation of α-Fe 2 O 3 films by electrodeposition and photodeposition of Co–Pi on them to enhance their photoelectrochemical propertiesˮ, RSC Advances, Vol. 5, pp. 36307-36314, 2015.
[20] G. Rahman & O. S. Joo, “Electrodeposited nanostructured α-Fe 2 O 3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performanceˮ, Materials Chemistry and Physics, Vol. 140, pp. 316-322, 2013.
[21] A. Kleiman-Shwarsctein, M. N. Huda, A. Walsh, Y. Yan, G. D. Stucky, Y. S. Hu, M. M. Al-Jassim & E. W. McFarland, “Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: experiment and theoryˮ, Chemistry of Materials, Vol. 22, pp. 510-517, 2009.
[22] P. Kumar, P. Sharma, R. Shrivastav, S. Dass & V. R. Satsangi, “Electrodeposited zirconium-doped α-Fe 2 O 3 thin film for photoelectrochemical water splittingˮ, international journal of hydrogen energy, Vol. 36, pp. 2777-2784, 2011.
[23] A. Kleiman-Shwarsctein, Y. S. Hu, A. J. Forman, G. D. Stucky & E. W. McFarland, “Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splittingˮ, The Journal of Physical Chemistry C, Vol. 112, pp. 15900-15907, 2008.
[24] J. Cai, S. Li, Z. Li, J. Wang, Y. Ren & G. Qin, “Electrodeposition of Sn-doped hollow α-Fe 2 O 3 nanostructures for photoelectrochemical water splittingˮ, Journal of Alloys and Compounds, Vol. 574, pp. 421-426, 2013.
[25] E. S. Cho, M. J. Kang & Y. S. Kang, “Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperatureˮ, Physical Chemistry Chemical Physics, Vol. 17, pp. 16145-16150, 2015.
[26] T. Lopes, L. Andrade, F. Le Formal, M. Gratzel, K. Sivula & A. Mendes, “Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopyˮ, Physical Chemistry Chemical Physics, Vol. 16, pp. 16515-16523, 2014.
[27] P. Zhang, T. Wang, X. Chang, L. Zhang & J. Gong, “Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematiteˮ, Angewandte Chemie International Edition, Vol. 55, pp. 5851-5855, 2016.
[28] Z. Hu, Z. Shen & J. C. Yu, “Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidationˮ, Chemistry of Materials, Vol. 28, pp. 564-572, 2016.
[29] B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann & J. Bisquert, “Water Oxidation at Hematite Photoelectrodes: The Role of Surface Statesˮ, Journal of the American Chemical Society, Vol. 134, pp. 4294-4302, 2012.
[30] H. Mulmudi, N. Mathews, X. Dou, L. Xi, S. Pramana, Y. Lam & S. Mhaisalkar, “Controlled growth of hematite (α-Fe 2 O 3) nanorod array on fluorine doped tin oxide: synthesis and photoelectrochemical propertiesˮ, Electrochemistry Communications, Vol. 13, pp. 951-954, 2011.
[31] P. Dias, A. Vilanova, T. Lopes, L. Andrade & A. Mendes, “Extremely stable bare hematite photoanode for solar water splittingˮ, Nano Energy, Vol. 23, pp. 70-79, 2016.
[32] A. Annamalai, P. S. Shinde, T. H. Jeon, H. H. Lee, H. G. Kim, W. Choi & J. S. Jang, “Fabrication of superior α-Fe 2 O 3 nanorod photoanodes through ex-situ Sn-doping for solar water splittingˮ, Solar Energy Materials and Solar Cells, Vol. 144, pp. 247-255, 2016.
_||_