تاثیر افزودنی نانو گرافیت بر رفتار چگالش کامپوزیتهای دیبورید زیرکونیم-کاربید سیلیسیم ساخته شده به روش تفجوشی پلاسمای جرقه ای
محورهای موضوعی : سرامیک ها و مواد نسوزسروش پرویزی 1 * , زهره احمدی 2 , مهدی شاهدی اصل 3 , مهران جابری زمهریر 4
1 - گروه متالورژی و مواد، دانشکده مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
2 - پژوهشگاه مواد و انرژی، کرج، ایران
3 - گروه متالورژی، دانشکده مهندسی مکانیک، دانشگاه محقق اردبیلی
4 - پژوهشگاه مواد و انرژی، کرج
کلید واژه: تفجوشی پلاسمای جرقه ای, کامپوزیتهای دما بالا, رفتار چگالش, نانوگرافیت,
چکیده مقاله :
کامپوزیتهای دما بالای دیبورید زیرکونیم-کاربید سیلیسیم تقویت شده با مقادیر متفاوت افزودنی نانو گرافیت (0، 5/2، 5، 5/7 و 10 درصد وزنی) با روش تفجوشی پلاسمای جرقهای تولید و برای تعیین تاثیر نانو ورقههای گرافیتی روی رفتار چگالش کامپوزیت بررسی شدند. تفجوشی پلاسمای جرقهای در دمای 1900 درجه سانتی گراد به مدت زمان 7 دقیقه و با اعمال فشار 40 مگاپاسکال، به ساخت کامپوزیت چگال دیبورید زیرکونیم-کاربید سیلیسیم تقویت شده با 5 درصد وزنی نانوگرافیت (با چگالی نسبی 6/100 درصد) منجر شد. زدایش ناخالصیهای اکسیدی به واسطه واکنشهای احیایی آنها با گرافیت و تشکیل فازهای زیر میکرونی رخ داد. همچنین تشکیل فاز درجای کاربید زیرکونیم از دلایل افزایش چگالی این کامپوزیتها شناخته شد.
Abstract Ultrahigh temperature ZrB2-SiC composites reinforced with different amount of nano-graphite (0, 2.5, 5, 7.5 and 10 wt%) were fabricated by spark plasma sintering process. The effect of graphite nano-flake on the densification behavior of the mentioned composites were investigated. Spark plasma sintering was carried out at a temperature of 1900 °C for a dwell time of 7 min under an applied pressure of 40 MPa. A fully dense ZrB2-SiC composite (with relative density of 100.6%) was obtained by the addition of 5 wt% nano-graphite. Elimination of oxide impurities through the chemical reactions with graphite as well as formation of sub-micron phases caused to an enhancement in the densification. In addition, the in-situ formed ZrC phase was one of the reasons behind the increasing of relative density. Keywords: spark plasma sintering, ultrahigh temperature composites, densification behavior, nano-graphite, ZrB2-SiC composites Keywords: spark plasma sintering, ultrahigh temperature composites, densification behavior, nano-graphite, ZrB2-SiC composites
[1] S. Q. Guo, “Densification of ZrB2-based composites and their mechanical and physical properties: A reviewˮ, Journal of the European Ceramic Society, Vol. 29, No. 6, pp. 995-1011, 2009.
[2] M. Shahedi Asl, M. Ghassemi Kakroudi & B. Nayebi, “A fractographical approach to the sintering process in porous ZrB2–B4C binary compositesˮ, Ceram. Int, Vol. 41, pp. 379–387, 2015.
[3] M. Jaberi Zamharir, M. Shahedi Asl, N. Pourmohammadie Vafa & M. Ghassemi Kakroudi, “Significance of hot pressing parameters and reinforcement size on densification behavior of ZrB2–25 vol% SiC UHTCsˮ, Ceramics International, Vol. 41, pp. 6439–6447, 2015.
[4] M. Shahedi Asl, M. Ghassemi Kakroudi & S. Noori, “Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressureˮ, J. Alloy. Compd., Vol. 679, pp. 481-487, 2015.
[5] M. Shahedi Asl 7 M. Ghassemi Kakroudi, “A processing–microstructure correlation in ZrB2–SiC composites hot-pressed under a load of 10 MPaˮ, Universal Journal of Materials Science, Vol. 3, No. 1, pp. 14-21, 2015.
[6] F. Monteverde & A. Bellosi, “Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulatesˮ, Solid State Sciences, Vol. 7, No. 5, pp. 622-630, 2005.
[7] W. C. Tripp, H. H. Davis & H. C. Graham, “Effect of a SiC addition on the oxidation of ZrB2ˮ, American Ceramic Society Bulletin, Vol. 52, No. 8, pp. 612-616, 1973.
[8] M. Shahedi Asl, M. Ghassemi Kakroudi, A. Farzaneh & B. Nayebi, “Influence of nano-SiC participation on densification and mechanical properties of ZrB2ˮ, in Proceedings of the 10th Nanoscience and Nanotechnology Conference of Turkey (NanoTR10), Istanbul, 2014.
[9] H. Wang, C. Wang, X. Yao & D. Fang, “Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sinteringˮ, Journal of the American Ceramic Society, Vol. 90, No. 7, pp. 1992-1997, 2007.
[10] F. Guillard, A. Allemand, J. D. Lulewicz & J. Galy, “Densification of SiC by SPS-effects of time, temperature and pressureˮ, Journal of the European Ceramic Society, Vol. 27, pp. 2725-2728, 2007.
[11] Z. Balak, M. Shahedi Asl, M. Azizieh, H. Kafashan & R. Hayati, “Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPSˮ, Ceramamic International, Vol. 43, No. 2, pp. 2209–2220, 2017.
[12] M. Shahedi Asl, Z. Ahmadi, S. Parvizi, Z. Balak & I. Farahbakhsh, “Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 compositesˮ, Ceramics International, 2017. http://dx.doi.org/10.1016/j.ceramint.2017.07.121.
[13] Z. Balak, M. Azizieh, H. Kafashan, M. Shahedi Asl & Z. Ahmadi, “Optimization of effective parameters on thermal shock resistance of ZrB2-SiC-based composites prepared by SPS: Using Taguchi designˮ, Materials Chemistry and Physics, https://doi.org/10.1016/j.matchemphys.2017.0.
[14] Balbo & D. Sciti, “Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramicsˮ, Materials Science and Engineering A, Vol. 475, pp. 108–112, 2008.
[15] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, P. Pirmohammadi & M. Ghassemi Kakroudi, “Fractographical characterization of hot pressed and pressureless sintered SiAlONdoped ZrB2–SiC compositesˮ, Materials Characterization, Vol. 102, pp. 137-145, 2015.
[16] M. Shahedi Asl, F. Golmohammadi, M. Ghassemi Kakroudi & M. Shokouhimehr, “Synergetic effects of SiC and Csf in ZrB2-based ceramic composites. Part I: densification behaviorˮ, Ceramics International, Vol. 42, No. 3, pp. 4498-4506, 2016.
[17] W. Zhi, W. Zhanjun & Sh. Guodong, “Fabrication, mechanical properties and thermal shock resistance of a ZrB2-graphite ceramicˮ, International Journal of Refractory Metals and Hard Materials, Vol. 29, pp. 351–355, 2011.
[18] ج. پوراسد، ن. احسانی و س. ع. خلیفه سلطانی، "نقش پایه گرافیتی بر تشکیل ساختار گرادیان ترکیبی C/SiC طی فرآیند زینتر سمانتاسیون تودهای"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 1، ص 91-98، 1395.
[19] S. Blazewicz, J. Blocki, J. Chlopek & J. Godelwski, “Thin C/C composite shells for high energy phisics: Manufacture and propertiesˮ, Carbon, Vol. 34, No. 11, pp. 1393-1399, 1996.
[20] X. Zhang, Z. Wang, X. Sun, W. Han & C. Hong, “Effect of graphite flake on the mechanical properties of hot pressed ZrB2–SiC ceramicsˮ, Materials Letters, Vol. 62, pp. 4360–4362, 2008.
[21] Z. Wang, S. Wang, X. Zhang, P. Hu & C. Hong, “Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2–SiCˮ, Journal of Alloys and Compounds, Vol. 484, pp. 390-394, 2009.
[22] S. Zhou, Z. Wang & W. Zhang, “Effect of graphite flake orientation on microstructure and mechanical properties of ZrB2–SiC–graphite compositeˮ, Journal of Alloys and Compounds, Vol. 485, pp. 181–185, 2009.
[23] Z. Wang, C. Hong, X. Zhang, X. Sun & J. Han, “Microstructure and thermal shock behavior of ZrB2–SiC–graphite compositeˮ, Materials Chemistry and Physics, Vol. 113, pp. 338–341, 2009.
[24] M. Shahedi Asl, M. Ghassemi Kakroudi, R. Abedi Kondolaji & H. Nasiri, “Influence of graphite nano-flakes on densification and mechanical properties of hot-pressed ZrB2–SiC compositeˮ, Ceram. Int, Vol. 41, pp. 5843-5851, 2015.
[25] ن. احمدی، ح. بهاروندی و ن. احسانی قمیشلوئی، "بررسی تاثیر نانوکاربیدبور بر خواص مکانیکی کامپوزیت B4C-5% vol TiB2 به روش زینتر بدون فشار"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 3، ص 135-142، 1395.
[26] Y. Hou, P. Hu, X. Zhang & K. Gui, “Effects of graphite flake diameter on mechanical properties and thermal shock behavior of ZrB2–NanoSiC–graphite ceramicsˮ, Journal of Refractory Metals and Hard Materials, Vol. 41, pp. 133-137, 2013.
[27] S. Zhu, W. G. Fahrenholtz, G. E. Hilmas & Sh. C. Zhang, “Pressureless sintering of carbon-coated zirconium diboride powdersˮ, Materials Science and Engineering A, Vol. 459, No. 1-2, pp. 167-171, 2007.
[28] S. K. Mishra & L. C. Pathak, “Effect of carbon and titanium carbide on sintering behaviour of zirconium diborideˮ, Journal of Alloys and Compounds, Vol. 465, pp. 547-555, 2008.
[29] S. Baik & P. F. Becher, “Effect of oxygen contamination of densification of TiB2ˮ, Journal of the American Ceramic Society, Vol. 70, pp. 527–530, 1987.
[30] W. Fahrenholtz, “The ZrB2 volatility diagramˮ, Journal of the American Ceramic Society, Vol. 88, No. 12, pp. 3509-3512, 2005.
[31] H. Lee & R. F. Speyer, “Pressureless sintering of boron carbideˮ, Journal of the American Ceramic Society, Vol. 86, pp. 1468–1473, 2003.
_||_