بررسی ریزساختاری تکاسپلت آلومینایی ایجاد شده با فرآیند پاشش شعلهای سرعت بالای محلول پیشماده
محورهای موضوعی : عملیات حرارتیسعید تقی رمضانی 1 * , ضیاء والفی 2
1 - دانشجوی دکتری مهندسی مواد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
2 - دانشیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
کلید واژه: آلومینا, پاشش شعلهای سرعت بالا, پاشش تکاسکن, نیترات آلومینیوم, محلول پیشماده,
چکیده مقاله :
فرآیندهای پاشش حرارتی محلول پیش ماده (SPTS) روشی مناسب جهت تولید پوشش های با ساختار نانو هستند. بهواسطهی عدم رخداد کامل واکنش هایی نظیر تبخیر حلال و پیرولیز پیشماده، دستیابی به پوشش های با خواص کنترلشده در یک نرخ رسوب دهی رضایتبخش کماکان بهعنوان یک چالش مهم در این فرآیندها مطرح است که نیاز به کنترل دقیق پارامترهای پاشش دارد. در این تحقیق، بهمنظور بررسی تأثیر پارامترهای پاشش شعله ای سرعت بالای محلول پیش ماده از جمله مقدار سوخت و اکسیژن، فاصله پاشش و نرخ تزریق محلول از آزمون پاشش تک اسکن بر روی زیرلایه های شیشه ای استفاده شد. مورفولوژی اسپلت های تشکیلشده و مشخصه های ساختاری با استفاده از میکروسکوپ الکترون روبشی (SEM) بررسی شد. مقایسه ی ساختاری در آزمون پاشش تک اسکن که در دو نسبت سوخت به اکسیژن انجام شد، نشان داد که در پارامتر شعله با فشار اکسیژن bar 6 و سوخت bar 3 در نرخ تزریق محلول پیشمادهcm3/min 20 و فاصله پاششcm 5 به عنوان پارامتر بهینه انتخاب شد. در این پارامتر به دلیل پایین بودن نرخ تزریق محلول و انتقال گرمای بیشتر به ازای هر قطره محلول پیش ماده و تکمیل فرآیندهایی که در نتیجه آن ذوب و کریستالی شدن اتفاق می افتد، تعداد اسپلت ها افزایش یافت. همچنین ارزیابی پاشش تک اسکن در شعله با فشار اکسیژن bar 8 و سوخت bar 4 و فاصله پاششcm 5 نشان داد که نرخ تزریق محلول پیشمادهcm3/min 40 به دلیل افزایش تعداد اسپلت های ریز و بهواسطهی بهبود راندمان پوشش دهی مناسب تر خواهد بود.
Solution precursor thermal Spraying (SPTS) processes are suitable methods for producing nano-structured coatings. Due to the uncompleted reactions such as solvent evaporation and pyrolysis of the precursor, achieving coatings with controlled properties at a satisfactory precipitation rate remains an important challenge in these processes that needs to precise control of spray parameters. In this study, in order to investigate the effect of Solution precursor high velocity flame spraying parameters such as fuel and oxygen content, spraying distance and solution injection rate, single-scan spraying test was performed on glass substrates. The morphology of the formed splats and their structural characteristics were investigated using Scanning Electron Microscope (SEM). Structural comparison in the single-scan spraying test performed in two ratios of fuel to oxygen, showed that in the flame parameter with oxygen pressure of 6 bar and fuel 3 bar at the injection rate of Solution precursor 20 cm3/min and spray distance of 5 cm was selected as the optimal parameter. In this parameter, due to the low injection rate of the solution and higher heat transfer per drop of the solution precursor and completion of processes that resulting in melting and crystallization, the number of splats increased. Also, evaluation of single-scan spraying in the flame with oxygen pressure of 8 bar and fuel bar of 4 bar and spray distance of 5 cm showed that the injection rate of 40 cm3/min solution precursor would be more appropriate due to increasing the number of fine splats and improving coating efficiency.
[1] H. Grewal, H. Singh & A. Agrawal, "Microstructural and mechanical characterization of thermal sprayed nickel–alumina composite coatings," Surface and coatings Technology, vol. 216, pp. 78-92, 2013.
[2] A. Afrasiabi, M. Saremi & A. Kobayashi, "A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+ Al 2 O 3 and YSZ/Al 2 O 3," Materials Science and Engineering: A, vol. 478, no. 1, pp. 264-269, 2008.
[3] P. Fauchais, "Thermal Spray Fundamentals/ Fauchais, P., Heberlein, J., Boulos, M," NY: Springer, p. 1600, 2014.
[4] E. Bouyer, D. Branston, G. Lins, M. Müller, J. Verlegen & M. von Bradke, "Progress in Plasma Processing of Materials ed P Fauchais," ed: New York, USA: Begell House, 1997.
[5] س. تقیرمضانی، ض. والفی، ن. احسانی، "بررسی خواص اکسیداسیون و شوک حرارتی پوشش سپر حرارتی کامپوزیتی YSZ/Al2O3 با آلومینای ایجاد شده با فرآیند پاشش حرارتی محلول پیشماده،" فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 4، صفحه 90-77، 2020.
[6] J. Rauch, G. Bolelli, A. Killinger, R. Gadow, V. Cannillo & L. Lusvarghi, "Advances in high velocity suspension flame spraying (HVSFS)," Surface and Coatings Technology, vol. 203, no. 15, pp. 2131-2138, 2009.
[7] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی، ف. نعیمی، "بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوششهای MCrAlY اعمالشده به روش HVOF،" فرآیندهای نوین در مهندسی مواد، دوره 10، صفحه 80-67، 2016.
[8] D. Chen, E. H. Jordan & M. Gell, "Solution precursor high-velocity oxy-fuel spray ceramic coatings" , Journal of the European Ceramic Society, vol. 29, no. 16, pp. 3349-3353, 2009.
[9] M. Pasandideh-Fard, V. Pershin, S. Chandra & J. Mostaghimi, "Splat shapes in a thermal spray coating process: simulations and experiments," Journal of thermal spray technology, vol. 11, no. 2, pp. 206-217, 2002.
[10] S. Brossard, "Microstructural Analysis of Thermal Spray Coatings by Electron Microscopy," University of New South Wales, 2010.
[11] A. T. T. Tran, M. Hyland, T. Qiu, B. Withy & B. James, "Effects of surface chemistry on splat formation during plasma spraying," Journal of thermal spray technology, vol. 17, no. 5-6, pp. 637-645, 2008.
[12] H. Kassner, R. Siegert, D. Hathiramani, R. Vassen & D. Stoever, "Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings," Journal of thermal spray technology, vol. 17, no. 1, pp. 115-123, 2008.
[13] H. Kaβner, R. Vaβen & D. Stöver, "Study on instant droplet and particle stages during suspension plasma spraying (SPS)," Surface and coatings technology, vol. 202, no. 18, pp. 4355-4361, 2008.
[14] M. Gell et al., "Thermal barrier coatings made by the solution precursor plasma spray process," Journal of Thermal Spray Technology, vol. 17, no. 1, pp. 124-135, 2008.
[15] S. A. Deshpande, Thermal spray coatings: Insights into microstructural evolution and high temperature behavior across length scales. State University of New York at Stony Brook, 2004.
[16] L. Xie et al., "Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings," Surface and Coatings Technology, vol. 201, no. 3-4, pp. 1058-1064, 2006.
[17] M. Gell, L. Xie, X. Ma, E. H. Jordan & N. P. Padture, "Highly durable thermal barrier coatings made by the solution precursor plasma spray process," Surface and Coatings Technology, vol. 177, pp. 97-102, 2004.
[18] M. Li & P. D. Christofides, "Modeling and control of high-velocity oxygen-fuel (HVOF) thermal spray: a tutorial review," Journal of thermal spray technology, vol. 18, no. 5-6, p. 753, 2009.
_||_