سنتز پودر هگزا آلومینات لانتانیم (LaMgAl11O19) به منظور پوشش دهی به روش پلاسما اسپری بر روی سوپر آلیاژ پایه نیکل به عنوان پوشش سد حرارتی
محورهای موضوعی : سنتز موادمحمد مهدی خرمی راد 1 , محمد رضا رحیمی پور 2 , سید محمد مهدی هادوی 3 , کوروش شیروانی جوزانی 4
1 - پژوهشگاه مواد و انرژی
2 - پژوهشگاه مواد و انرژی
3 - پژوهشگاه مواد و انرژی
4 - پژوهشگاه مواد و انرژی
کلید واژه: پوشش سد حرارتی, سنتز حالت جامد, هگزا آلومینات لانتانیم, پلاسما اسپری,
چکیده مقاله :
هگزاآلومینات لانتانیم(LaMgAl11O19) به عنوان یک پوشش سد حرارتی جدید به دلیل خواص و ویژگی های برتر، جایگزین مناسبی برای زیرکونیای پایدارشده با ایتریا( YSZ) می باشد. در این پژوهش ابتدا به سنتز پودر به روش حالت جامد و سپس به بررسی و فرآوری آن جهت انجام پوشش دهی پلاسما اسپری پرداخته شد. جهت ارزیابی خواص پودر سنتز شده از میکروسکوپ الکترونی، الگوی پراش اشعه ایکس و آنالیز حرارتی استفاده شد. برای سنتز هگزا آلومینات لانتانیم، ابتدا از α-Al2O3 به عنوان مواد اولیه استفاده شد که نتایج نشان دهنده عدم تشکیل فاز مورد نظر بود. سپس از پودر -Al2O3γ استفاده شد که در نتیجه آن ترکیبی به صورت تکفاز با مورفولوژی صفحه ای تشکیل شد و همچنین دمای سنتز این ترکیب Cº1330 تعیین گردید. در محدوده دمای Cº1100-850 ترکیبات LaAlO3، MgAl2O3 و α-Al2O3 تشکیل گردیدند که استحاله فاز نهایی ناشی از واکنش این سه ترکیب می باشد. از نتایج آنالیز فازی می توان نتیجه گرفت که نقش اصلی فاز-Al2O3γ، کاهش دمای سنتز فاز اسپینل MgAl2O4 در دمایی کمتر از Cº 1100 می باشد. آنالیز شیمیایی پودرهای گرانول شده و پوشش اعمالی به روش پلاسما اسپری تحت پارامترهای بهینه سازی شده، حاکی از وجود یک سیستم تکفاز و عدم تجزیه ترکیب می باشد.
Lanthanum hexaaluminate (LaMgAl11O19) as a new thermal barrier coating due to the properties and superior features is selected as a preferred composition instead of yttria -stabilized zirconia (YSZ) Composition. In this paper, synthesis of this composition by solid state reaction method was investigated then it was prepared to coat by atmospheric plasma spraying (APS) method. Scanning electron microscope with X-ray microanalysis (SEM-EDS), differential thermal analysis (TGA/DTA), X-ray diffraction (XRD) were used to characterize of the synthesized powder, granules and free standing as-sprayed LaMgAl11O19 coating. In this research first, α-Al2O3 powder was used as a raw material. The results showed that this material was not suitable for the synthesis of this compound. Therefore γ-Al2O3 powder was used. As a result of that, a single phase compound with plate-like morphology was formed and the synthesis temperature was 1330 Cº. Also α-Al2O3, LaAlO3 and MgAl2O3 compounds were formed at 850-1100 ºC that the final phase transformation was occurred due to reaction between these three compounds. From the phase analysis results, it can be concluded that the main role of γ -Al2O3 phase in structure is to reduce the synthesis temprature of MgAl2O4 spinel phase to a temperature of less than 1100 ºC. Also chemical analysis results of granules and APS coating with optimal parameters indicated the existence of single phase structure and the second phase was not found.
[1] س. ع. صادقی فدکی، ض. والفی و ک. زنگنه مدار، "ارزیابی میکروساختاری پوشش های YSZ پاشش پلاسمایی"، فصلنامه علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره اول، 1394.
[2] X. Q. Cao, R. Vassen & D. Stoever, “Ceramic Materials for Thermal Barrier Coatingsˮ, Journal of the European Ceramic Society, Vol. 24, pp. 1–10, 2004.
[3] Z. Hong Song, C. Xiao Ge, L. Gang, W. Xin Li & D. Xu Dan, “Influence of Gd2O3 Addition on Thermophysical Properties of La2Ce2O7 Ceramics for Thermal Barrier Coatingsˮ, Journal of the European Ceramic Society, Vol. 32, pp. 3693–3700, 2012.
[4] C. J. Friedrich, R. Gadow & M. H. Lischka. “Lanthanum Hezaaluminate Thermal Barrier Coatingsˮ, 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures, B, 2001.
[5] W. Pan, S. R. Phillpot, C. Lei Wan, A. Chernatynskiy & Z. Qu, “Low Thermal Conductivity Oxidesˮ, MRS Bulletin, Vol. 37, pp. 917-922, 2012.
[6] R. Vassen, A. Stuke & D. Sto¨ver, “Recent Developments in the Field of Thermal Barrier Coatingsˮ, Journal of Thermal Spray Technology, Vol. 18, pp. 181–186, 2009.
[7] X. Chen, Y. Z. Wenzhi Huang, H. Ma, B. Zou, Ying Wang & X. Cao, “Thermal Aging Behavior of Plasma Sprayed LaMgAl11O19 Thermal Barrier Coatingˮ, Journal of the European Ceramic Society, Vol. 31, pp. 2285–2294, 2011.
[8] A. L. & G. E., “Thermal Insulating Material and Method of Producing Sameˮ, 2006.
[9] N. Curry, “Design of Thermal Barrier Coatingsˮ, University Wes, 2014.
[10] G. Mauer, M. Ophelia Jarligo, D. Emil Mack & R. Vaßen, “Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues and Solutionsˮ, Journal of Thermal Spray Technology, Vol. 22, pp. 646–65, 2013.
[11] R. Vaßen, M. Ophelia Jarligo, T. Steinke, D. Emil Mack & D. Stöver, “Overview on Advanced Thermal Barrier Coatingsˮ, Surface & Coatings Technology, Vol. 205, pp. 938–942, 2010.
[12] D. Stöver, G. P., H. Lehmann, M. Dietrich, J. E. Döring & R. Vaßen, “New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatingsˮ, Journal of Thermal Spray Technology, Vol. 13, pp. 76-83, 2004.
[13] A. Joulia, M. Vardelle & S. Rossignol, “Synthesis and Thermal Stability of Re2Zr2O7, (Re=La,Gd) and La2(Zr1−xCex)2O7−δ Compounds under Reducing and Oxidant Atmospheres for Thermal Barrier Coatingsˮ, Journal of the European Ceramic Society, Vol. 33, pp. 2633–2644, 2013.
[14] X. Q. Cao, R. Vassen, F. Tietzb & D. Stoever, “New Double-Ceramic-Layer Thermal Barrier Coatings Based on Zirconia–Rare Earth Composite Oxidesˮ, Journal of the European Ceramic Society, Vol. 26, pp. 247–251, 2006.
[15] S. Zhao, L. G., Y. Zhao, W. Huang, L. Zhu, X. Fan, B. Zou & X. Cao, “Thermal Cycling Behavior and Failure Mechanism of La2(Zr0.7Ce0.3)2O7/ Eu3+-Doped 8YSZ Thermal Barrier Coating Prepared by Atmospheric Plasma Sprayingˮ, Journal of Alloys and Compounds, Vol. 580, pp. 101–107, 2013.
[16] S. Zhao, Y. Z., Ling Zhu, L. Gu, W. Huang, X. Fan, B. Zou, Y. Wang & X. Cao, “A Simple Non-Destructive Method to Indicate the Spallation and Damage Degree of the Double-Ceramic-Layer Thermal Barrier Coating of La2(Zr0.7Ce0.3)2O7 and 8YSZ: Euˮ, Journal of the European Ceramic Society, Vol. 33, pp. 2207–2213, 2013.
[17] H. Dai, X. Zhong, J. Li, J. Meng & X. Cao, “Neodymium–Cerium Oxide as New Thermal Barrier Coating Materialˮ, Surface & Coatings Technology, Vol. 201, pp. 2527–2533, 2006.
[18] X. Cao, “Development of New Thermal Barrier Coating Materials for Gas Turbinesˮ, 2004.
[19] X. Chen, Y. Zhao, X. Fan, Y. Liu, B. Zou, Y. Wang, H. Ma & X. Cao, “Thermal Cycling Failure of New LaMgAl11O19/YSZ Double Ceramic Top Coat Thermal Barrier Coating Systemsˮ, Surface & Coatings Technology, Vol. 205, pp. 3293–3300, 2011.
[20] S. M. Naga, “Ceramic Matrix Composite Thermal Barrier Coatings for TurbinePartsˮ, pp. 524-536, 2014.
[21] G. Pracht, R. Vden & D. Stover, “Lanthanum-Lithium Hexaaluminate - a New Material for Thermal Barrier Coatings in Magnetoplumbite Structure- Material and Process Developmentˮ, Advanced Ceramic Coatings and Interfaces, pp. 87-99, 2007.
[22] N. P. B. A. D. Zhu, “Thermal Properties of Oxides with Magnetoplumbite Structure for Advanced Thermal Barrier Coatingˮ, Surface & Coatings Technology, Vol. 202, pp. 2698–2703, 2008.
[23] X. Chen, L. Gu, B. Zou, Y. Wang & X. Cao, “New Functionally Graded Thermal Barrier Coating System Based on LaMgAl11O19/YSZ Prepared by Air Plasma Sprayingˮ, Surface & Coatings Technology Vol. 206, pp. 2265–2274, 2012.
[24] X. Chen, B. Zou, Y. Wang, H. Ma & X. Cao, “Microstructure and Thermal Cycling Behavior of Air Plasma-Sprayed YSZ/LaMgAl11O19 Composite Coatingsˮ, Journal of Thermal Spray Technology, Vol. 20, pp. 1328–1338, 2011.
[25] G. W. S. A. R. Gadow, “Lanthane Aluminate Thermal Barrier Coating Ceramicˮ, Engineering and Science Proceedings, pp. 291-297, 1999.
[26] X. Chen, Y. Zhang, X. Zhong, Z. Xu, J. F. Zhang, Y. Cheng, Y. Zhao, Y. Liu, X. Fan, Y. Wang, H. Ma & X. Cao, “Thermal Cycling Behaviors of the Plasma Sprayed Thermal Barrier Coatings of Hexaluminates with Magnetoplumbite Structureˮ, Journal of the European Ceramic Society, Vol. 30, pp. 1649–1657, 2010.
[27] J. F. Zhang, X. Zhong, Y. Cheng, Y. Wang, Z. Xu, X. Chen, H. Ma, Y. Zhao & X. Cao, “Thermal-Shock Resistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with Magnetoplumbite Structureˮ, Journal of Alloys and Compounds, Vol. 482, pp. 376–381, 2009.
[28] T. R. Hull, L. A. H, “The Thermal Decomposition of Huntite and Hydromagnesite - A Reviewˮ, Thermochimica Acta, Vol. 509, pp. 1-11, 2010.
[29] A. Neumann, D. W., “The Thermal Transformation fromLanthanum Hydroxide to Lanthanum Hydroxide Oxideˮ, Thermochimica Acta, Vol. 445, pp. 200-204, 2006.
[30] R. X. Zhu, Z. Guoliu, J. Huouyangn & Yuzhou, “Preparation and Characterization of LnMgAl11O19 (Ln=La, Nd,Gd) Ceramic Powdersˮ, Ceramics International, Vol. 39, pp. 8841–8846, 2013.
[31] I. Gómeza, M. H., Juan A. & M. Hinojosab, “Comparative Study of Microwave and Conventional Processing of MgAl2O4-Based Materialsˮ, Ceramics International, Vol. 30, No. 6, pp. 893–900, 2004.
[32] R. Xu, W. P. A. Q. H., “Modern Inorganic Synthetic Chemistryˮ, Elsevier, 2011.
[33] P. Alphonse, B. F., “Thermal stabilization of alumina modified by lanthanumˮ, Microporous and Mesoporous Materials, Vol. 196, pp. 191-198, 2014.
[34] Brandon, I. L. A. D., “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequencesˮ, J. Am. Ceram. Soc., Vol. 81, No. 8, pp. 1995-2012, 1998.
[35] ل. شریفی، ت. عبادزاده و س. ح. میرحسینی، "مقایسه خواص نانو پودر اکسید آلومینیوم سنتز شده در کوره و ماکروویو"، فصلنامه عملی و پژوهشی فرآیندهای نوین در مهندسی مواد، سال چهارم، شماره اول، 1389.
_||_