تاثیر فاصله الکترودها و پتانسیل الکتریکی اعمالی بر میزان رسوب نانو آلومینا در سوسپانسیون بر پایه اتانول
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمصطفی میلانی 1 , سید محمد زهرایی 2 * , سید محمد میرکاظمی 3
1 - سازمان پژوهش های علمی و صنعتی ایران
2 - سازمان پژوهشهای علمی و صنعتی ایران
3 - دانشگاه علم و صنعت ایران
کلید واژه: میدان الکتریکی, رسوب نشانی الکتروفورتیک, معادلات سینتیکی, نانو ذرات آلومینا,
چکیده مقاله :
سینتیک فرایند رسوبنشانی الکتروفورتیک متاثر از عوامل مختلفی است که هاماکر آنها را در پنج پارامتر غلظت سوسپانسیون، میدان الکتریکی دو سوی سوسپانسیون، مساحت سطح الکترودها، تحرک الکتروفورتیک ذرات و نهایتاً زمان فرایند خلاصه کرده است. میدان الکتریکی دو سوی سوسپانسیون را میتوان با استفاده از تغییر پتانسیل الکتریکی اعمالی و تغییر فاصله الکترودها تغییر داد. از آنجایی که سوسپانسیون حاوی ذرات جامد یک مقاومت غیر اهمی است تغییر این دو پارامتر یکسان نخواهد بود. تغییر میدان الکتریکی با استفاده از هر یک از این دو پارامتر سبب میشود معادلات سینتیکی حاکم تغییر کند. در فواصل زیاد الکترودها و پتانسیلهای الکتریکی ضعیف، معادلات سینتیکی مبتنی بر مقاومت الکتریکی دقت بیشتری دارند. در صورتی که در میدانهای قوی و فواصل کم معادلات مبتنی بر هدایت و جریان الکتریکی عبوری از مدار دقیقتر هستند. نتایج تحقیق حاضر نشان داد در میدان الکتریکی V/cm70 رابطه فراری و همکاران و در میدان الکتریکی V/cm25 معادله سارکار و نیکلسون با اختلافی به ترتیب کمتر از 01/0 و کمتر از 1/0 نتایج آزمایش را بهتر پیشبینی کردند.
The kinetics of electrophoretic deposition is influenced by various factors. Hamakr summarized them on five parameters such as suspension concentration, electric field on the suspension, the surface area of the electrodes, electrophoretic mobility, and the process time. The electric field in the suspension can be changed using the electric potential applied between the electrodes and electrode distance change. Since the suspensions is a non-ohmic resistance, these two parameters will not be the same. The change of electric field using each of these two parameters causes kinetic equations change. In long distances electrodes and poor electrical potential, kinetic equations are based on electrical resistance more accurately. In the strong fields and low electrode distance kinetic equations based on equivalent conductivity are more accurate. The results of this study showed that, in the electric field 70V/cm Ferrari et al. equation and in the electric field 25V/cm Sarkar and Nicholson equation have accuracy of less than 0.01 and less than 0.1, respectively.
[1] P. Amrollahi, J. S. Krasinski, R. Vaidyanathan, L. Tayebi & D. Vashaee, “Electrophoretic Deposition (EPD): Fundamentals and Applications from Nano- to Micro-Scale Structuresˮ, Springer International Publishing, pp. 1–27, 2015.
[2] م. ج. هادیان، ع. عراقی، ط. طلایی و م. ثانی، "بررسی خواص پوشش با ساختار تغییرات تدریجی اکسید تیتانیوم/هیدروکسی اپتایت، اعمال شده به روش الکتروفورتیک بر روی آلیاژ تیتانیوم Ti-6Al-4V"، فصلنامه فرایندهای نوین در مهندسی مواد، دوره 10 شماره 2، صفحه 153-165، 1394.
[3] R. Clasen, “Preparation of High-Purity Glasses and Advanced Ceramics via EPD of Nanopowdersˮ, Springer New York, New York, NY, pp. 217–266, 2012.
[4] Y. Sun, “Electrophoretic Deposition of Organic-Inorganic Nanocompositesˮ, A Thesis for the Degree Master of Science, McMaster University, 2012.
[5] M. J. Shane, J. B. Talbot, R. D. Schreiber, C. L. Ross, E. Sluzky & K. R. Hesse, “Electrophoretic Deposition of Phosphors: I. Conductivity and Zeta Potential Measurementsˮ, J. Colloid Interface Sci., Vol. 165, pp. 325–333, 1994.
[6] P. M. Biesheuvel & H. Verweij, “Theory of Cast Formation in Electrophoretic Depositionˮ, J. Am. Ceram. Soc., Vol. 82, pp. 1451–1455, 1999.
[7] H. C. Hamaker, “Formation of a deposit by electrophoresisˮ, Trans. Faraday Soc., Vol. 35, pp. 279–287, 1940.
[8] A. I. Avgustinik, V. S. Vigdergauz & G. I. Zhuravlev, “Electrophoretic deposition of ceramic masses from suspensions and calculation of deposit yieldsˮ, J Appl Chem USSR Engl Transl., Vol. 35, pp. 2090–2093, 1962.
[9] P. Sarkar & P. S. Nicholson, “Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramicsˮ, J. Am. Ceram. Soc., Vol. 79, pp. 1987–2002, 1996.
[10] Z. Zhang, Y. Huang & Z. Jiang, “Comment on‘Electrophoretic Deposition Forming of SiC-TZP Composites in a Nonaqueous Sol Media”, J. Am. Ceram. Soc., Vol. 78, pp. 3167–3168, 1995.
[11] B. Ferrari, R. Moreno & J. A. Cuesta, “A Resistivity Model for Electrophoretic Depositionˮ, Key Eng. Mater., Trans Tech Publ, Vol. 314, pp. 175–180, 2006.
[12] س. ع. خسروی فرد، ا. ح. یقطین، ا. خبازی زاده و ع. عراقی، "بررسی خواص خوردگی سایشی و خوردگی داغ پوشش آلومینا اعمال شده بر روی پایه فولادی به روش پاشش حرارتی حاصل از سوخت اکسیژندار"، فصلنامه فرایندهای نوین در مهندسی مواد، دوره 10 شماره 1، صفحه 59-69، 1393.
[13] Y. Hirata, A. Nishimoto & Y. Ishihara, “Forming of Alumina Powder by Electrophoretic Depositionˮ, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, Vol. 99, pp. 108–113, 1991.
[14] J. Ma & W. Cheng, “Electrophoretic Deposition of Lead Zirconate Titanate Ceramicsˮ, J. Am. Ceram. Soc., Vol. 85, pp. 1735–1737, 2004.
[15] C. Baldisserri, D. Gardini & C. Galassi, “An analysis of current transients during electrophoretic deposition (EPD) from colloidal TiO2 suspensionsˮ, J. Colloid Interface Sci., Vol. 347, pp. 102–111, 2010.
[16] Z. Zhang, Y. Huang & Z. Jiang, “Electrophoretic Deposition Forming of SiC-TZP Composites in a Nonaqueous Sol Mediaˮ, J. Am. Ceram. Soc., Vol. 77, pp. 1946–1949, 1994.
[17] P. Sarkar & P. S. Nicholson, “Comments on “Electrophoretic Deposition Forming of SiC-TZP Composites in a Nonaqueous Sol Mediaˮ, J. Am. Ceram. Soc., Vol. 78, pp. 3165–3166, 1995.
[18] H. Ohshima, “Electrical Conductivity of a Concentrated Suspension of Spherical Colloidal Particlesˮ, J. Colloid Interface Sci., Vol. 212, pp. 443–448, 1999.
[19] Ohshima, “Electrical Conductivity of a Concentrated Suspension of Soft Particlesˮ, J. Colloid Interface Sci., Vol. 229, pp. 307–309, 2000.
[20] Y. Liang, N. Hilal, P. Langston, V. Starov, “Interaction forces between colloidal particles in liquid: Theory and experimentˮ, Adv. Colloid Interface Sci., Vol. 134–135, pp. 151–166, 2007
_||_