بررسی ریزساختار، سختی و لایههای بینفلزی در جوشکاری اصطکاکی اغتشاشی آلومینیوم 6065 و مس
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمجید الیاسی 1 , رحیم نریمانی 2 , مرتضی حسین زاده 3 , حامد آقاجانی درازکلا 4
1 - دانشگاه صنعتی بابل، دانشکده مهندسی مکانیک، گروه ساخت و تولید
2 - دانشگاه آزاد اسلامی واحد ساری
3 - دانشگاه آزاد اسلامی آمل
4 - مربی، باشگاه پژوهشگران جوان و نخبگان، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: مس, جوشکاری اصطکاکی اغتشاشی, ریز ساختار محل اتصال, سختی محل اتصال, آلومینیوم 6065,
چکیده مقاله :
در این پژوهش، تغییرات متالورژیکی اتصال لب روی هم غیر همجنس فلز مس و آلیاژ آلومینیوم 6065 با استفاده از روش جوشکاری اصطکاکی اغتشاشی مورد بررسی قرار گرفت. به منظور بررسی خواص متالورژیکی اتصال از میکروسکوپ نوری، آنالیزهای پراش اشعه ایکس (XRD)، پراش انرژی اشعه ایکس (EDS) و آزمون ریزسختی سنج ویکرز استفاده شد. نتایج حاصل از بررسی ها نشان داد به دلیل تماس مسقیم آلومینیوم با شانه ایزار، تغییرات اندازه ریز ساختار فلز آلومینوم 6065 نسبت به فلز مس بیشتر بود. با افزایش سرعت دورانی ابزار و بیشتر شدن گرمای حاصل از اصطکاک، اندازه ریزساختار هر دو فلزپایه آلومینوم 6065 و مس کوچکتر شد و با افزایش سرعت خطی، و افزایش نرخ خنک شوندگی محل اتصال اندازه آنها بزرگتر شد. نتایج حاصل نشان داد که در منطقه اغتشاش، ساختارهای لایه ای در مرز دو فلز شکل گرفت که با افزایش دمای ورودی به محل اتصال ابعاد ساختارهای لایه ای شکل گرفته نازکتر و طول آنها طویل تر میشود. امتزاج بین دو فلز پایه در سرعت دورانی بالا و سرعت خطی پایین ابزار سبب شد تا ترکیبات بین فلزی CuAl2 و Cu9Al4 در مرز بین دو فلز شکل بگیرد. به دلیل تغییرات ریزساختاری محل اتصال و نیز شکلگیری لایههای بینفلزی، سختی محل اتصال از قسمت های دیگر اتصال بیشتر بود. بیشترین سختی محل اتصال بر اساس ریزسختی ویکرز 111 بود که در سرعت دورانی 1130 دور در دقیقه و سرعت خطی 24 میلیمتر بر دقیقه تولید شد.
In this study, metallurgical properties lap joint of pure copper and 6065 aluminum alloy with friction stir welding technique were investigated. To purpose the metallurgical properties of joint optical microscopy, X-ray diffraction analysis (XRD), energy dispersive X-ray (EDS) and Vickers hardness junction of micro gauge were used. The results shows that due to the direct contact between aluminum alloy and tool shoulder, the microstructure change of AA6065 was more than copper. With increasing tool rotation speed the microstructure size of AA6065 and copper became smaller and with increasing linear speed and cooling rate, the microstructure size of base material became more. The results shows that the structured layers were formed in stir zone which with increasing heat generation they geometry became thinner and stretcher. The combination of base materials in high tool rotation and low travelling speed caused the CuAl2 and Cu9Al4 intermetallic compounds were formed in base metal interface. For changes in microstructure size and formation of intermetallic compounds, the hardness of stir zone was more than other area of joint. The maximum hardness of joint area was 111 Vickers which allocated to the joint that welded with 1130 rpm and 24mm/min tool speed.
[1] M. Elyasi, H. Aghajani Derazkola & M. Hosseinzadeh, “Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminiumˮ, Proc IMechE Part B: J Engineering Manufacture, Vol. 230, No. 7, pp. 1234–1241, 2016.
[2] م. شعبانی، ب. شایق بروجنی و ر.ابراهیمی کهریزسنگی، "تأثیر سرعت چرخش ابزار بر خواص مکانیکی و رفتار خوردگی اتصال غیرهمجنس آلیاژ آلومینیوم 5083 و تیتانیوم خالص تجاری به روش جوشکاری همزن اصطکاکی"، فصلنامه فرآیند های نوین در مهندسی مواد، سال یازدهم، شماره چهارم، صفحات 96-79، زمستان 1396.
[3] ح. آقاجانی درازکلا، م. الیاسی و م. حسین زاده، "بررسی شکلگیری عیوب و لایههای بین فلزی در جوشکاری اصطکاکی اغتشاشی آلومینیوم AA100 به فولاد A441 AISI"، فصلنامه فرآیند های نوین در مهندسی مواد، سال نهم، شماره سوم، صفحات 233-119، پاییز 1394.
[4] C. M. Chen & R. Kovacevic, “Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state weldingˮ, International Journal of Machine Tools & Manufacture, Vol. 44, pp. 1205–1214, 2004.
[5] S. Sundaresan & K. G. K. Murti, “The formation of intermetallic phases in aluminum–austenitic stainless steel friction weldsˮ, Material Forum, Vol. 17, pp. 301–307, 1993.
[6] M. Hansen, Constitution of Binary Alloys, New York, McGraw- Hill Book Company Inc, pp. 365-382, 1958.
[7] م. باباجانی، م. شمعانیان و م. کثیری، "ارزیابی ریزساختار و خواص مکانیکی اتصال غیرمشابه اینکلوی 825 به فولاد زنگ نزن آستنیتی L316"، فصلنامه فرآیند های نوین در مهندسی مواد، سال یازدهم، شماره سوم، صفحات 100-87، پاییز 1396.
[8] H. Aghajani Derazkola, H. J. Aval & M. Elyasi, “Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steelˮ, Science and Technology of Welding and Joining, Vol. 20, No. 7, pp. 553-562, 2015.
[9] H. Aghajani Derazkola & A. Simchi, “Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly (methyl methacrylate)-based nanocomposites prepared by friction stir processingˮ, Journal of Mechanical Behavior of Biomedical Material, Vol. 79, pp. 246–253.
[10] H. Aghajani Derazkola & A. Simchi, “Friction-stir lap-joining of aluminium-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility studyˮ, Science and Technology of Welding and Joining, Vol. 23, No. 1, pp. 35-49, 2018.
[11] H. Aghajani Derazkola & A. Simchi, “Experimental and thermomechanical analysis of friction stir welding of poly (methyl methacrylate) sheetsˮ, Science and Technology of Welding and Joining, Vol. 23, No. 3, pp. 209-218, 2018.
[12] N. Kumar, W. Yuan & R. S. Mishra, “Friction Stir Welding of Dissimilar Alloys and Materialsˮ, Elsevier. Inc, pp 86-92, 2015.
[13] M. Farahati, M. Abbasi & S. H. Razavi, “Friction stir welding of AA1050 aluminum alloy to pure copperˮ, Proceedings of The Tenth National Manufacturing Conference, Babol: Noushiravani University of Technology Press, pp. 23-40, 2008.
[14] H. Barekatain, “Microstructure and Mechanical Properties in Dissimilar Butt Friction Stir Welding of Severely Plastic Deformed Aluminum AA 1050 and Commercially Pure Copper Sheetsˮ, PhD Thesis, Department of Material Science, Sharif University of Technology, 2013.
[15] L. Xia wei, Z. Da tong, Q. Cheng & Z. Wen, “Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir weldingˮ, Transactions of Nonferrous Metals Society of China, Vol 22, pp. 1298-1306, 2012.
[16] E. T. Akinlabi & S. A. Akinlabi, “Effect of Heat Input on the Properties of Dissimilar Friction Stir Welds of Aluminium and Copperˮ, American Journal of Materials Science, Vol. 2, No. 5, pp. 147-152, 2012.
[17] P. Liu, Q. Shi, W. Wang, X. Wang & Z. Zhang, “Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materialsˮ, Materials Letters, Vol. 62, No. 25, pp. 4106–4108, 2008.
[18] Galvão, D. Verdera, D. Gesto, A. Loureiro & D. M. Rodrigues, “Analysing The Challenge of Aluminium to Copper FSWˮ, Proceedings ninth International Symposium on Friction Stir Welding, Alabama, Huntsville University Press, pp. 113-126, 2012.
[19] P. Xue, B. L. Xiao, D. Wang & Z. Y. Ma, “Achieving high property friction stir welded aluminium/copper lap joint at low heat inputˮ, Science and Technology of Welding and Joining, Vol. 16, No. 8, pp. 657-661, 2011.
[20] J. A. Al Jarrah, “Surface Morphology and Mechanical Properties of Aluminum-Copper Joints Welded by Friction Stir Weldingˮ, Contemporary Engineering Sciences, Vol. 7, No. 5, pp. 219-230, 2014.
[21] T. Saeida, A. Abdollah zadehb & B. Sazgarib, “Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir weldingˮ, Journal of Alloys and Compounds, Vol. 490, No 1–2, pp. 652–655, 2010.
[22] C. W. Tan, Z. G. Jiang, L. Q. Li, Y. B. Chen & X. Y. Chen, “Microstructural evolution and mechanical properties of dissimilar Al/Cu joints produced by friction stir weldingˮ, Materials and Design, Vol. 51, pp. 466-473, 2013.
[23] P. Xue, B. L. Xiao, D. R. Ni & Z. Y. Ma, “Enhanced mechanical properties of friction stir welded dissimilar Al-Cu joint by intermetallic compoundsˮ, Materials Science and Engineering: A, Vol. 527, No. 21-22, pp. 5723-5727, 2010.
[24] P. Xue, B. L. Xiao, D. R. Ni & Z. Y. Ma, “Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu jointsˮ, Materials Science and Engineering: A, Vol. 528, No. 13-14, pp. 4683-4689, 2011.
[25] J. R. Davis, “Aluminum and aluminum alloysˮ, 10st ed., AWS welding Handbook, Ohio Metal Park, Vol. 3, Chap. 1, 1998.
[26] J. R. Davis, “Copper and copper alloysˮ, 10st ed., AWS welding Handbook, Ohio Metal Park, Vol. 3, Chap. 3, 1998.
[27] O. Al Roubaiy, S. M. Nabat & A. D. L. Batako, “Experimental and theoretical analysis of friction stir welding of Al–Cu jointsˮ, International Journal of Advanced Manufacturing Technology, Vol 71, pp. 1631–1642, 2014.
[28] H. A. Derazkola, M. Elyasi & M. Hosseinzadeh “Formation of Defects and Intermetallic Compound in Friction Stir welding of AA1100 Aluminum alloy to A441 AISI steelˮ, Advance Processes in Material Engineering, Vol. 9, No. 3, pp. 219-233, 2015.
[29] T. K. Bhattacharya, H. Das & T. K. Pal, “Influence of welding parameters on material flow, mechanical property and intermetallic characterization of friction stir welded AA6063 to HCP copper dissimilar butt joint without offsetˮ, Transection of Nonferrous Metal Socity of China, Vol. 25, pp. 2833−2846, 2015.
[30] Elrefaey, M. Takahashi & K. Ikeuchi, “Preliminary Investigation of Friction Stir Welding Aluminium/Copper Lap Jointsˮ, Welding in the World, Vol. 49, pp. 93-101, 2005.
[31] P. K. Sahua, S. Pala, S. K. Palb & R. Jainb, “Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding jointsˮ, Journal of Materials Processing Technology, Vol. 235, pp. 55–67, 2016.
_||_