بررسی تاثیر افزودن نانو ذرات TiO2 بر روی هدایت الکتریکی نانو کامپوزیت RGO-ZnO
محورهای موضوعی : عملیات حرارتینجمه لطفیان 1 , امیرعباس نوربخش 2 , پریسا مشایخی 3 , سارا عباسپور 4 , سید مهدی میرهادی 5 , سعید جبارزارع 6
1 - دانشگاه آزاد اسلامی واحد شهرضا
2 - دانشگاه ازاد اسلامی واحد شهرضا
3 - دانشگاه ازاد اسلامی واحد شهرضا
4 - دانشگاه ازاد اسلامی واحد نجف اباد
5 - دانشگاه ازاد اسلامی واحد شهرضا
6 - دانشگاه ازاد اسلامی واحد نجف اباد
کلید واژه: نانو کامپوزیت, طیف سنجی امپدانس الکتروشیمیایی, هدایت الکتریکی, TiO2, RGO-ZnO,
چکیده مقاله :
پژوهش حاضر در ارتباط با بررسی هدایت الکتریکی نانو کامپوزیت RGO-ZnO-TiO2 در مقایسه با نانو کامپوزیت RGO_ZnO می باشد. در راستای انجام این پژوهش ابتدا گرافن اکساید با استفاده از روش هامر اصلاح شده سنتز و جهت تبدیل به گرافن اکساید احیاشده (RGO) تحت نور UV و دما قرار گرفت.سنتز نانو ذرات TiO2 و ZnO توسط روش سل ژل انجام شد. جهت مشخصه یابی نانو ذرات سنتز شده،این نانو ذرات تحت آنالیز فازی XRD،DRSUV و FTIR قرار گرفتند و سنتز این نانو ذرات به خوبی اثبات گردید. جهت آماده سازی نمونه ها با استفاده از روش غوطه وری،نانو ذراتRGO ، ZnO وTiO2 به ترتیب بر روی شیشه FTO پوشش داده شدند و میزان باند گپ توسط روش تاک پلات و هدایت الکتریکی با استفاده از طیف سنجی امپدانس الکتروشیمیایی محاسبه ودو نمونهRGO-ZnO با RGO-ZnO-TiO2 مقایسه گردید. نتایج حاصل از مقایسه این دو نمونه نشان داد افزودن نانو ذرات TiO2به نانو کامپوزیت RGO-ZnO باعث کاهش باند گپ از 22/3 به 11/3 و افزایش مقاومت از 104*8/2 اهم به104 *76/5 اهم می گردد.با بررسی سطوح انرژی نانو ذرات ZnO,RGO,TiO2 ، علت این افزایش مقاومت به بالاتربودن سطح انرژی ZnO نسبت به TiO2 و عدم توانایی الکترون در غلبه بر این سدپتانسیل در عدم حضور نور UV نسبت داده شده و قرار دادن این نمونه تحت نور UV و کاهش شدید مقاومت تائیدی بر این مکانیزم می باشد.
This present research was related to electrical conductivity of RGO-ZnO-TiO2 nanocomposite in comparison RGO-ZnO nanocomposite . In order to carry out this research, at first graphene oxide was synthesized by using modified Hummer method and reduction of graphene oxide (reduced graphene oxide(RGO), was done by UV light and temperature. TiO2 and ZnO nanoparticles were synthesized by sol-gel method.XRD,FTIR and DRSUV were used to investigate these nanoparticles. For sample preparation ,dip coating method was used and all particles were coated on the surface of FTO respectively. for investigation of adding TiO2 nanoparticles on the electrical conductivity and amount of band gap of RGO-ZnO nanocomposite, electrochemical impedance spectroscopy and talc plot were used . The results of comparison between these 2 samples showed that adding TiO2 nanoparticle to RGO-ZnO nanocomposite reduced band gap from 3.22 to 3.11 and increase resistance from 2.8*104Ω to 5.76*104Ω . with study of level energy of RGO, ZnO and TiO2 nanoparticles ,the reason of increasing resistance related to higher ZnO energy level in comparison to TiO2 energy level and electron Inability to overcome of this level energy in the absence of UV light .with putting this sample under UV light could be reduced this resistance.
[1] Y. Zhu, S. Murali, W. Cai, X. Li, J. Won Suk, J. R. Potts & R. S. Ruoff, “Graphene and graphene oxide: Synthesis, Properties, and applicationsˮ, Adv. Materials (2010)1-19.
[2] J. Guerrero Contreras & F. Caballero Briones, “Graphene oxide powders with different oxidation degree,prepared by synthesis variation of the Hummers methodˮ, Materials chemistry and physics, pp. 1-12, 2015.
[3] ت. آقاجانی، "بررسی رفتار الکتروشیمیایی و کاربرد الکترود طلای اصلاح شده بوسیله گرافن عامل دار شده در لبه ها"، ارشد دانشگاه صنعتی شریف، 1391.
[4] S. Ryong Kim, M. Khaled Parvez & M. Chhowalla, “UV- reduction of grapheme oxide and its application as an interfacial layer to reduce the back - transport reactions in dye sensitized solar cellsˮ, Chemical physical letters, Vol. 483, pp. 124-127, 2009.
[5] X. Liu, L. Pan, T. Lv & Z. Sun, “Investigation of photocatalytic activities over ZnO-TiO2- reduced graphene oxide composite synthesized via microwave -assisted reactionˮ, Journal of colloid and interface science, Vol. 394, pp. 441-444, 2013.
[6] G. Williams, B. Seger & Prashant V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxideˮ, ACS Nano, Vol. 7, pp. 1487–1491, 2008.
[7] T. Xu, L. Zhang &H. Cheng, “Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism studyˮ, Catal. B: Environ., Vol. 101, pp. 382–387, 2011.
[8] X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun & C. Sun, “UV- assisted photocatalytic synthesis of ZnO – reduced graphene oxide composite with enhanced photocatalytic activity in reduction of Cr(VI)ˮ, Chemical engineering journal, Vol. 183, pp. 238-243, 2012.
[9] Nekoubin, H. Ghayour Najafabadi & M. Nasr Esfahani, “An Illustration of Photocatalytic Properties of ZnOnanorods array Films”, J. Adv. Mater. Process, Vol. 1, No. 1, pp. 39-45, 2013.
[10] A. Anish Madhavan, A. Mohandas, A. Licciulli, K. P. Sanosh, P. Praveen, R. Jayakumar, S. V. Nair, A. Sreekumaran Nair & A. Balakrishnan, “Electro spun continuous nano fibres based on TiO2-ZnO-Graphene compositeˮ, RSC Advances, 2013.
[11] F. Tuz Johra & W. Gwang Jung, “RGO- TiO2-ZnO composite: Synthesis, characterization and application to photo catalysisˮ, Applied catalysis A: General, Vol. 491, pp. 52-57, 2015.
[12] H. Tian, H. Fan, H. Guo & N. Song, “Solution- based synthesis of ZnO/carbon nanostructure by chemical coupling for high performance gas sensorsˮ, Sensor and Actuator, Vol. 195B, pp. 132-139, 2014.
[13] S. S. Kanmani & K. Ramachandran, “Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications”, Renewable Energy, Vol. 43, pp. 149-156, 2012.
[14] Measurements of Band Gap in Compound Semiconductors- Band Gap Determination from Diffuse Reflectance Spectra, Shimadzu Application News, 2013.
[15] A. Fakhri, “Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Kinetics, thermodynamics and mechanism studiesˮ, Journal of Saudi Chemical Society, 2013.
[16] S. Debnath, A. Maity & K. Pillay, “Impact of process parameters on removal of Congo red by graphene oxide from aqueous solutionˮ, Journal of Environmental Chemical Engineering, Vol. 2, pp. 260-272, 2014.
[17] L. H. Tang, Y. Wang, Y. M. Li, H. B. Feng, J. Lu & J. H. Li, “Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Filmsˮ, Adv. Funct. Mater, Vol. 19, pp. 2782–2789, 2009.
[18] Li, Y., et al., “Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubesˮ, Chemical Engineering Research and Design, Vol. 91, pp. 361-368, 2013.
[19] P. Sharma & M. R. Das, “Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parametersˮ, Journal of Chemical & Engineering Data, Vol. 58, pp. 151-158, 2012.
[20] Li, Y., et al., “Preparation of ceria nanoparticles supported on carbon nanotubesˮ, Materials research bulletin, Vol. 37, pp. 313-318, 2002.
[21] S. Pei, H. Ming Cheng, “The reduction of graphene oxideˮ, Carbon, Vol. 50, pp. 3210–3228, 2012.
[22] G. Nisha Narayanan, G. Deepan P & A. Karthigeyan, “Structural and optical properties of zinc oxide- reduced graphene oxide nanocomposite thin film prepared by hydrothermal methodˮ, International journal of chem tech research, Vol. 3, pp. 1065-1071, 2015.
[23] A. Nourbakhsh, S. abbaspour, M. Masoud, S. N. Mirsatari, A. vahedi, K. J. D. Mackenzie, “Photocatalytic properties of mesoporous TiO2 nanocomposites modified with carbon nanotubes and copperˮ, Ceramics International, Vol. 42, pp. 11901-11906, 2016.
[24] آ. فتاح الحسینی و ا. ایمان طلب، "بررسی رفتار الکتروشیمیایی فولاد زنگ نزن 304 کم کربن در یک محلول قلیایی با روش موت- شاتکی و روش طیف سنجی امپدانس الکتروشیمیایی"، فصلنامه علمی پژوهشی فرایند های نوین در مهندسی مواد،شماره 2، تابستان، 1393.
_||_