بررسی رفتار خوردگی پوشش تانتالم لایهنشانی شده به روش کندوپاش مگنترونی
محورهای موضوعی : خوردگی و حفاظت موادمصطفی علیشاهی 1 , فرزاد محبوبی 2 , سیدمحمد موسوی خوئی 3
1 - استادیار، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران
2 - دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران
3 - دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران
کلید واژه: طیفسنجی امپدانس الکتروشیمیایی, خوردگی, پوشش تانتالم, کندوپاش مگنترونی, حفرات راهباز,
چکیده مقاله :
در این پژوهش پوشش تانتالم به روش کندوپاش مگنترونی جریان مستقیم روی سیلیکون (۱۰۰) و فولاد زنگنزن L۳۱۶ لایهنشانی شد. خواص ساختاری پوشش تانتالم به کمک آزمون پراش پرتو ایکس ارزیابی شده و از میکروسکوپهای الکترونی عبوری و روبشی و همچنین میکروسکوپ نیروی اتمی جهت بررسی سطح مقطع و مورفولوژی سطح پوشش استفاده شد. افزون بر این، رفتار خوردگی پوشش تانتالم در مقایسه با فولاد زنگنزن L۳۱۶ به کمک آزمون پلاریزاسیون پتانسیودینامیک بررسی شده و از آزمون طیفسنجی امپدانس الکتروشیمیایی جهت تعیین مکانیزمهای خوردگی استفاده شد. نتایج نشان دادند که استفاده از لایه آستری نیترید تانتالم، میتواند سبب تغییر ساختار کریستالی پوشش تانتالم از مخلوط فازی α و β به ساختار تک فاز α، و کاهش مقاومت الکتریکی پوشش از حدود ۹۰ به ۱۵ میکرواهم در سانتیمتر شود. همچنین مطالعات میکروسکوپی نشان دادند که پوشش تانتالم ساختاری ستونی و بسیار فشرده با سطحی یکنواخت و بدون عیب از خود نشان داده و زبری میانگین آن کمتر از ۶ نانومتر اندازهگیری شد. نتایج آزمونهای خوردگی نشان داد که پوشش تانتالم مانند یک سد فیزیکی از تماس محلول خورنده با زیرلایه جلوگیری کرده و بازده حفاظت بیشتر از ۷۰ درصد از سبب میشود. در این ارتباط، نفوذ محلول خورنده به زیرلایه از طریق حفرات راهباز موجود در پوشش به عنوان مکانیزم خوردگی پوشش تانتالم شناخته شد و شاخص تخلخل پوشش حدود ۶ درصد تعیین شد.
In this study, tantalum (Ta) thin film was deposited on Si(100) and 316L stainless steel (SS) substrates by DC magnetron sputtering. The structural properties of Ta film were investigated by X-ray diffraction analysis. In addition, the scanning and transmission electron microscopies as well as atomic force microscopy were used to study the cross-section and the morphology of the coating. The corrosion behavior of the bare and Ta-coated 316L SS was evaluated by potentiodynamic polarization test. The electrochemical impedance spectroscopy was employed to study the corrosion mechanisms. The results revealed that the structure of Ta coating on either Si and SS substrates is a mixture of α+β phases, while pre-deposition of a thin tantalum nitride seed layer causes to the deposition of pure α-Ta and decrease the sheet resistance from 90 µΩ.cm to 15 µΩ.cm. Microscopic evaluations shows that the Ta coating is compact, homogeneous and defect-free, exhibiting a columnar structure with a surface roughness of less than 6 nm. Furthermore, the corrosion studies show that the Ta coating perform as a physical barrier between corrosive electrolyte and substrate and, in this way, provide a protective efficiency of more than 70%. In this regard, the diffusion of corrosive electrolyte toward the substrates through open porosities was found to be the corrosion mechanism of the Ta coating and the porosity index of the coating was calculated to be about 6%.
[1] م. علیشاهی، م. ح. بینا و س. م. منیرواقفی، "شکیل و بررسی اثر درصد CNT بر رفتار خوردگی پوشش الکترولس کامپوزیتی نیکل-فسفر-نانولولهکربنی"، فصلنامه فرآیندهای نوین در مهندسی مواد، دوره ۷، شماره ۳، ص. ۳۸-۳۱، ۱۳۹۲.
[2] ر. سلیمانیگیلاکجانی، ف. محبوبی و م. علیشاهی، "ررسی رفتار خوردگی و تریبولوژیکی پوشش الکترولس نانوکامپوزیتی Ni-P-SiC اعمال شده روی سطح آلومینیم "، دوره ۸، شماره ۲، ص. ۱۲۱-۱۱۳، ۱۳۹۳.
[3] D. E. J. Talbot & J. D. R. Talbot, Corrosion Science and Technology, Second Edition, CRC Press, 2007.
[4] P. J. Kelly & R. D. Arnell, “Magnetron sputtering: a review of recent developments and applicationsˮ, Vacuum, Vol. 56, pp. 159-172, 2000.
[5] C. Petrogalli, L. Montesano, M. Gelfi, G. M. La Vecchia & L. Solazzi, “Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defectsˮ, Surface and Coatings Technology, Vol. 258, pp. 878-885, 2014.
[6] S. S. Firouzabadi, K. Dehghani, M. Naderi & F. Mahboubi, “Numerical investigation of sputtering power effect on nano-tribological properties of tantalum-nitride film using molecular dynamics simulationˮ, Applied Surface Science, Vol. 367, pp. 197-204, 2016.
[7] R. Gago, M. Vinnichenko, R. Hübner & A. Redondo Cubero, “Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter depositionˮ, Journal of Alloys and Compounds, Vol. 672, pp. 529-535, 2016.
[8] H. Gao, Y. Li, C. Li, F. Ma, Z. Song & K. Xu, “Tuning the electronic properties in TaNx/Ag nanocomposite thin filmsˮ, RSC Advances, Vol. 6, pp. 30998-31004, 2016.
[9] N. Srinatha, Y. S. No, V. B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A. M. Umarji & W. K. Choi, “Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin filmsˮ, RSC Advances, Vol. 6, pp. 9779-9788, 2016.
[10] D. Zheng, J. Xiong, P. Guo, S. Wang & H. Gu, “AlN-based film buck acoustic resonator operated in shear mode for detection of carcinoembryonic antigensˮ, RSC Advances, Vol. 6, pp. 4908-4913, 2016.
[11] م. یاری، م. مجتهدزاده و ع. افشار، "تأثیر زمان لایه نشانی بر خواص ساختاری و فیزیکی پوشش های کربنی لایه نشانی شده با روش کندوپاش مگنترونی"، فصلنامه فرآیندهای نوین در مهندسی مواد، دوره ۵، شماره ۲، ص. ۱۰-۱، ۱۳۹۰.
[12] A. I. H. Committee, Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, ASM International, 1990.
[13] S. Myers, J. Lin, R.M. Souza, W. D. Sproul & J. J. Moore, “The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputteringˮ, Surface and Coatings Technology, Vol. 214, pp. 38-45, 2013.
[14] A. A. Al-masha’al, A. Bunting & R. Cheung, “Evaluation of residual stress in sputtered tantalum thin-filmˮ, Applied Surface Science, Vol. 371, pp. 571-575, 2016.
[15] M. Alishahi, F. Mahboubi, S. M. Mousavi Khoie, M. Aparicio, R. Hübner, F. Soldera & R. Gago, “Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cellsˮ, Journal of Power Sources, Vol. 322, pp. 1-9, 2016.
[16] L. Gladczuk, A. Patel, C. Singh Paur & M. Sosnowski, “Tantalum films for protective coatings of steelˮ, Thin Solid Films, Vol. 467, pp. 150-157, 2004.
[17] K. Tillmann, A. Thust, A. Gerber, M. P. Weides & K. Urban, “Atomic structure of Beta-tantalum nanocrystallitesˮ, Microsc Microanal, Vol. 11, pp. 534-544, 2005.
[18] E. Mastropaolo, R. Latif, E. Grady & R. Cheung, “Control of stress in tantalum thin films for the fabrication of 3D MEMS structuresˮ, Journal of Vacuum Science & Technology B, Vol. 31, pp. 06FD02, 2013.
[19] S. W. Myers, “Investigation of the beta to alpha phase transition of thick tantalum coatings deposited by modulated pulsed power magnetron sputteringˮ, thesis, Ann Arbor, United States, 2012.
[20] D. W. Matson, E. D. McClanahan, S. L. Lee & D. Windover, “Properties of thick sputtered Ta used for protective gun tube coatingsˮ, Surface and Coatings Technology, Vol. 146, pp. 344-350, 2001.
[21] H. Yu, L. Yang, L. Zhu, X. Jian, Z. Wang & L. Jiang, “Anticorrosion properties of Ta-coated 316L stainless steel as bipolar plate material in proton exchange membrane fuel cellsˮ, Journal of Power Sources, Vol. 191, pp. 495-500, 2009.
[22] V. H. Pham, S. H. Lee, Y. Li, H. E. Kim, K. H. Shin & Y. H. Koh, “Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co–Crˮ, Thin Solid Films, Vol. 536, pp. 269-274, 2013.
[23] M. Roy, V. K. Balla, S. Bose & A. Bandyopadhyay, “Comparison of Tantalum and Hydroxyapatite Coatings on Titanium for Applications in Load Bearing Implantsˮ, Advanced Engineering Materials, Vol. 12, pp. B637-B641, 2010.
[24] U. Gramberg, M. Renner & H. Diekmann, “Tantalum as a material of construction for the chemical processing industry–A critical surveyˮ, Materials and Corrosion, Vol. 46, pp. 689-700, 1995.
[25] P. E. Philip & A. Schweitzer, “Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metalsˮ, CRC Press, 2006.
[26] S. D. Cramer, B. S. Covino & C. Moosbrugger, ASM Handbook Volume 13b: Corrosion: Materials, ASM International, 2005.
[27] A. Robin & J. L. Rosa, “Corrosion behavior of niobium, tantalum and their alloys in hot hydrochloric and phosphoric acid solutionsˮ, International Journal of Refractory Metals and Hard Materials, Vol. 18, pp. 13-21, 2000.
[28] S. Maeng, L. Axe, T. A. Tyson, L. Gladczuk & M. Sosnowski, “Corrosion behaviour of magnetron sputtered α- and β-Ta coatings on AISI 4340 steel as a function of coating thicknessˮ, Corrosion Science, Vol. 48, pp. 2154-2171, 2006.
[29] S. M. Maeng, L. Axe, T. A. Tyson, L. Gladczuk & M. Sosnowski, “Corrosion behavior of magnetron sputtered α-Ta coatings on smooth and rough steel substratesˮ, Surface and Coatings Technology, Vol. 200, pp. 5717-5724, 2006.
[30] A. Robin, “Corrosion behaviour of tantalum in sodium hydroxide solutionsˮ, Journal of Applied Electrochemistry, Vol. 33, pp. 37-42, 2003.
[31] M. Ikeda, M. Murooka & K. Suzuki, “Semi-epitaxial bcc Ta growth on metal nitrideˮ, Japanese journal of applied physics, Vol. 41, pp. 3902, 2002.
[32] B. Cullity, “Elements of X-ray Diffraction, 2ndˮ, Adisson-Wesley Publishing. USA, 1978.
[33] G. C. A. M. Janssen, M. M. Abdalla, F. Van Keulen, B. R. Pujada & B. Van Venrooy, “Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafersˮ, Thin Solid Films, Vol. 517, pp. 1858-1867, 2009.
[34] G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysisˮ, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 82, pp. 172-175, 1909.
[35] F. M. d’Heurle, “Aluminum films deposited by rf sputteringˮ, Metallurgical and Materials Transactions B, Vol. 1, pp. 725-732, 1970.
[36] G. Abadias, L. E. Koutsokeras, P. Guerin & P. Patsalas, “Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particlesˮ, Thin Solid Films, Vol. 518, pp. 1532-1537, 2009.
[37] H. Windischmann, “Intrinsic stress in sputter-deposited thin filmsˮ, Critical Reviews in Solid State and Materials Sciences, Vol. 17, pp. 547-596, 1992.
[38] G. Abadias, W. P. Leroy, S. Mahieu & D. Depla, “Influence of particle and energy flux on stress and texture development in magnetron sputtered TiN filmsˮ, Journal of Physics D: Applied Physics, Vol. 46, pp. 055301, 2013.
[39] D. M. Mattox, Handbook of physical vapor deposition (PVD) processing film formation, adhesion, surface preparation and contamination control, Noyes Publications, Westwood, N. J., 1998.
[40] Y. G. Shen, Y. W. Mai, D. R. McKenzie, Q. C. Zhang, W. D. McFall & W. E. McBride, “Composition, residual stress, and structural properties of thin tungsten nitride films deposited by reactive magnetron sputteringˮ, Journal of Applied Physics, Vol. 88, pp. 1380, 2000.
[41] A. A. Navid & A. M. Hodge, “Controllable residual stresses in sputtered nanostructured alpha-tantalumˮ, Scripta Materialia, Vol. 63, pp. 867-870, 2010.
[42] H. Koivuluoto, J. Näkki & P. Vuoristo, “Corrosion properties of cold-sprayed tantalum coatingsˮ, Journal of Thermal Spray Technology, Vol. 18, pp. 75-82, 2009.
[43] E. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation methodˮ, Corrosion Science, Vol. 47, pp. 3202-3215, 2005.
[44] S. Pugal Mani, A. Srinivasan & N. Rajendran, “Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC)ˮ, International Journal of Hydrogen Energy, Vol. 40, pp. 3359-3369, 2015.
[45] J. Creus, H. Mazille & H. Idrissi, “Porosity evaluation of protective coatings onto steel, through electrochemical techniquesˮ, Surface and Coatings Technology, Vol. 130, pp. 224-232, 2000.
[46] I. M. Notter & D. R. Gabe, “Polarisation resistance methods for measurement of the porosity of thin metal coatingsˮ, Corrosion Science, Vol. 34, pp. 851-870, 1993.
[47] F. C. Walsh, C. Ponce de León, C. Kerr, S. Court & B. D. Barker, “Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatingsˮ, Surface and Coatings Technology, Vol. 202, pp. 5092-5102, 2008.
[48] C. Liu, Q. Bi, A. Leyland & A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modellingˮ, Corrosion Science, Vol. 45, pp. 1243-1256, 2003.
[49] J. C. Galván, M. T. Larrea, I. Braceras, M. Multigner & J. L. González-Carrasco, “In vitro corrosion behaviour of surgical 316LVM stainless steel modified by Si+ ion implantation – An electrochemical impedance spectroscopy studyˮ, Journal of Alloys and Compounds, Vol. 676, pp. 414-427, 2016.
[50] J. Flis & A. Gajek, “Impedance parameters of nitrided 304L stainless steel in an acidified sulphate solutionˮ, Journal of Electroanalytical Chemistry, Vol. 515, pp. 82-90, 2001.
[51] C. Liu, Q. Bi, A. Leyland & A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviourˮ, Corrosion Science, Vol. 45, pp. 1257-1273, 2003.
[52] ZPlot®/ZView™(version 3.3f), A software for EIS measurements and data analysis written by D. Johnson, Scribner Associates Inc, Southern Pines, NC (USA), Copyright© 1990-2013 (http://www.scribner.com)).
[53] M. Alishahi, S. M. Monirvaghefi, A. Saatchi & S. M. Hosseini, “The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni–P–CNT composite coatingˮ, Applied Surface Science, Vol. 258, pp. 2439-2446, 2012.
_||_