بررسی رفتار اسپینل منگنز کبالتایت به عنوان پوشش صفحات اتصال دهنده پیل سوختی اکسید جامد
محورهای موضوعی : سنتز موادپوریا لسانی 1 , علیرضا بابائی 2 , ابوالقاسم عطائی 3
1 - دانش آموخته کارشناسی ارشد- دانشگاه تهران
2 - استادیار- دانشگاه تهران
3 - استاد- دانشگاه تهران
کلید واژه: پیل سوختی اکسید جامد, همرسوبی, منگنز کبالتایت, اسپینل, صفحات اتصال دهنده,
چکیده مقاله :
در این پژوهش نانوذرات اسپینلی منگنز کبالتایت (MnCo2O4) با استفاده از روش شیمیایی همرسوبی تهیه شد. نتایج آنالیز پراش پرتو ایکس (XRD) نشان داد که با کلسیناسیون در دمای C˚1000 شکلگیری فاز اسپینلی کامل شد. با توجه به تصاویر میکروسکپ الکترونی روبشی (FESEM) از پودرهای ماده اسپینلی مشخص شد که با افزایش دمای کلسیناسیون از 350 به C˚1000، اندازه ذرات با قطر nm 148 و ضخامت nm 18 به ذراتی با اندازه متوسط µm5/1 تغییر میکند. در ادامه با پوششدهی پودرهای پیشسازه و کلسینه شده بر سطح فولاد زنگ نزن فریتی (AISI430)، مشخص شد که استفاده از پودر پیشسازه، پوششی با تراکم مناسب روی سطح فولاد ایجاد کرده است. همچنین این پوشش مانع از نفوذ به خارج کروم موجود در فولاد زیرلایه میشود. نتایج حاصل از طیفسنجی پراش انرژی پرتو ایکس (EDS) نشان داد که در اثر نفوذ عناصری مانند Mn، Cr و Fe از زیرلایه به سمت پوشش و نفوذ عناصر Mn و Co به سمت زیرلایه، ناحیه اسپینل مخلوط در حد فاصل پوشش و زیرلایه شکل میگیرد. علت کاهش عنصر کبالت موجود در ناحیه پوششی را میتوان به نفوذ این عنصر از پوشش به داخل ساختار زیرلایه نسبت داد. تصاویر میکروسکوپ الکترونی از سطح زیرلایه پوشش داده شده با پودر پیش سازه نشان داد در قسمتی از پوشش ترکهای درون دانهای با پهنایی در حدود nm 150 ایجاد شده است. از جمله دلایل تشکیل ترکها میتوان به زمان نامناسب تفجوشی، عدم انطباق ضریب انبساط حرارتی لایه اسپینلی با زیرلایه و تنش ناشی از تشکیل اکسید آهن اشاره کرد.
In this study, Manganese cobaltite (MnCo2O4) spinel powders were synthesized by co-precipitation method. X ray diffraction (XRD) patterns show that the spinel phase was formed at around 350°C. Formation of spinel phase was further completed by increasing temperature up to 1000°C. Additionally, XRD patterns prove that MnCo2O4 spinel material has been stable in this temperature range. Field emission scanning electron microscope observations show that plate like particles with an average diameter of 148 and thickness of 18 nm was converted to equiaxed particles with an average particle size of 1.5 µm by increasing calcination temperature from 350 to 1000°C. Investigation of the coating of uncalcined and calcined powder on AISI 430 ferritic stainless steel shows that a proper dense coating is developed on the stainless steel surface by using uncalcined precursor powders. And also, this coating performs well by prohibiting of outward diffusion of Fe from the substrate. In this way, a low thickness chromia layer (Cr2O3) is formed between the coating and the substrate. EDX analysis shows that a mixed spinel zone is formed in the interface of the coating and the substrate due to diffusion of some elements such as Mn, Cr, and Fe from substrate to the coating, as well as Mn and Co from coating to the substrate.
[1] T. X. Nguyen, “Spinel oxide protective coatings for solid oxide fuel cell interconnectsˮ, 2013.
[2] ل. رضازاده، ز. همنبرد، س. باغشاهی و ا. نوزاد گلی کند، "بررسی ویژگیهای درزگیرهای شیشه-سرامیک متعلق به سیستم BaO-B2O3-SiO2 مورد کاربرد در پیلهای سوختی اکسید جامد"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 8، شماره 3، صفحه 53-63 پاییز 1393.
[3] N. Shaigan, W. Qu, D. G. Ivey & W. Chen, “A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnectsˮ, Journal of Power Sources, Vol. 195, pp. 1529-1542, 2010.
[4] K. Wang, Y. Liu & J. W. Fergus, “Interactions between SOFC interconnect coating materials and chromiaˮ, Journal of the American Ceramic Society, Vol. 94, pp. 4490-4495, 2011.
[5] P. Gannon, V. I. Gorokhovsky, M. Deibert, R. J. Smith, A. Kayani, P. White & et al., “Enabling inexpensive metallic alloys as SOFC interconnects: An investigation into hybrid coating technologies to deposit nanocomposite functional coatings on ferritic stainless steelsˮ, International Journal of Hydrogen Energy, Vol. 32, pp. 3672-3681, 2007.
[6] H. E. Mohamed, “Oxidation Behavior of Some Cr Ferritic Steels for High Temperature Fuel Cellsˮ, Faculty of Engineering Cairo University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Metallurgical Engineering Faculty of Engineering, Cairo University Giza, 2012.
[7] H. Ebrahimifar, M. Zandrahimi & H. Habibifar, “Improved electrical conductivity of coated ferritic stainless steel used in SOFC as interconnect at 700 Cˮ, International Journal of Electronic Engineering Research, Vol. 2, pp. 519, 2010.
[8] K. E. Sickafus, J. M. Wills & N. W. Grimes, “Structure of spinelˮ, Journal of the American Ceramic Society, Vol. 82, pp. 3279-3292, 1999.
[9] Y. Fang, C. Wu, X. Duan, S. Wang & Y. Chen, “High-temperature oxidation process analysis of MnCo2O4 coating on Fe–21Cr alloyˮ, international journal of hydrogen energy, Vol. 36, pp. 5611-5616, 2011.
[10] J. Prakash & S. Buddhudu, “Synthesis and analysis of LiNbO3 ceramic powders by co-precipitation methodˮ, Indian Journal of Pure and Applied Physics, Vol. 50, pp. 320-324, 2012.
[11] P. Lesani, A. Babaei, A. Ataie & E. Mostafavi, “Nanostructured MnCo2O4 synthesized via co-precipitation method for SOFC interconnect applicationˮ, International Journal of Hydrogen Energy, 2016
[12] م. جعفری و س. ع. حسن زاده تبریزی، "بررسی پارامترهای موثر در سنتز نانو کریستالهای اسپینل CoAl2O4 به روش پلی اکریل آمید"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، شماره 3، صفحه 191-197 پاییز 1394.
[13] Z. Yang, G. Xia, S. P. Simner & J. W. Stevenson, “Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnectsˮ, Journal of the Electrochemical Society, Vol. 152A, pp. 1896-1901, 2005.
[14] F. Borges, D. Melo, M. Camara, A. Martinelli, J. Soares, J. De Araujo & et al., “Magnetic behavior of nanocrystalline MnCo2O4 spinelsˮ, Journal of magnetism and magnetic materials, Vol. 302, pp. 273-277, 2006.
[15] N. Hosseini, M. Abbasi, F. Karimzadeh & G. Choi, “Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnectsˮ, Journal of Power Sources, Vol. 273, pp. 1073-1083, 2015.
[16] C. Yu, P. Sun, P. Kao & C. Chang, “Evolution of microstructure during annealing of a severely deformed aluminumˮ, Materials Science and Engineering, Vol. 366A, pp. 310-317, 2004.
_||_