ساخت و بررسی خواص ساختاری و جذب امواج الکترومغناطیسی در کامپوزیت های باریم استرانسیوم تیتانات/فریت کبالت-روی
محورهای موضوعی : سنتز مواد
1 - پژوهشگر / دانشگاه صنعتی مالک اشتر
کلید واژه: نانوکامپوزیت, جذب امواج الکترومغناطیسی, پیروالکتریک, اتلاف بازتابی, خواص ساختاری و مغناطیسی,
چکیده مقاله :
در این تحقیق کامپوزیتهای باریم استرانسیوم تیتانات / فریت کبالت-روی که از دو فاز مغناطیسی متفاوت تشکیل شده، مورد بررسی قرار داده شده است. فاز پیروالکتریک شامل ذرات باریم استرانسیوم تیتانات با اندازهی ذرات در حدود 150 نانومتر و فاز مغناطیسی نرم شامل نانوذرات فریت کبالت–روی با اندازهی ذرات در حدود 30 نانومتر است. هر دو فاز به کمک روش سل- ژل و هر یک با استوکیومتری به-خصوصی تهیه شدهاند. آنالیزهای پراش پرتو X تشکیل فاز خالصی را برای هر یک از فازهای مغناطیسی نشان داد و آنالیز FESEM بیانگر خواص ساختاری نانوذرات فریت کبالت-روی و باریم استرانسیوم تیتانات در ساختار است. بررسی گذردهی الکتریکی، تراوایی مغناطیسی و اتلاف بازتابی نمونهها در محدوده فرکانسی GHz 18-1 چگونگی پاسخ امواج الکترومغناطیسی به این نمونهها را در این محدودهی فرکانسی نشان داد. بر طبق اتلاف بازتابی مربوط به کامپوزیتها، دو مکانیزم برای جذب امواج الکترومغناطیسی وجود دارد. در ناحیه ابتدایی این محدودهی فرکانسی، اتلاف مغناطیسی ناشی از وجود نانوذرات فریت کبالت-روی غالب بوده و در ناحیه انتهایی این محدوده، اتلاف دی-الکتریکی ناشی از وجود ذرات باریم استرانسیوم تیتانات غالب است.
In this study, barium strontium titanate/cobalt zinc ferrite composites that composed of two different magnetic phases were investigated. Pyroelectric phase consists of barium strontium titanate particles with particle size of about 150 nm and soft magnetic phase consists of cobalt zinc ferrite nanoparticles with particle size of about 30 nm. Two phases were prepared with sol-gel method and under appropriate stoichiometry. XRD analyses indicated formation of pure phase for each magnetic phases and FESEM analysis indicate the structural properties of Cobalt-Zinc ferrite and Barium Strontium Titanate nanoparticles. Investigation of permittivity, permeability and reflection loss of samples indicated the response of electromagnetic waves to these samples in the frequency range of 1-18 GHz. According to the reflection loss of composites, there are two mechanisms for the absorption of electromagnetic waves. In the first region of this frequency band, magnetic loss from Cobalt-Zinc ferrite nanoparticles is dominate and in the last region of this frequency band, dielectric loss from barium strontium titanate is dominate.
[1] D. Y. Kim, Y. C. Chung & et al., “Dependence of microwave absorbing property on ferrite volume fraction in MnZn ferrite-rubber compositesˮ, IEEE Trans. Magn., Vol. 32, pp. 555-558, 1996.
[2] Y. Naito & K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristicsˮ, IEEE Trans. Microwave Theory Tech., Vol. 19, pp. 65-72, 1971.
[3] Saito, M. Ogawa, K. Tsutsui, H. Endo & S. Yahagi, Mater. Japan., Vol. 38, pp. 46–48, 1999.
[4] M. Matsumoto & Y. Miyata, Proceedings of EMC ’98 ROMA, pp. 523 –527, 1998.
[5] S. Yoshida, M. Sato, E. Sugawara & Y. Shimada, “Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy
flakes–polymer compositeˮ, J. Appl. Phys., Vol. 85, pp. 4636–4638, 1999.
[6] T. Maeda, S. Sugimoto, T. Kagotani, D. Book, K. Inomata, H. Ota & Y. Houjou, “Electromagnetic Microwave Absorption Properties of a Fine Structure Formed from the Sm2Fe17 Compound after Disproportionation in Air or Nitrogenˮ, Mater. Trans. JIM, Vol. 42, pp. 446–449, 2001.
[7] F. R. Lamastra, F. Nanni & et al., “Morphology and structure of electrospun Cofe2o4/multi-wall carbon nanotubes composite nanofibersˮ, Chem. Eng. J., Vol. 162, pp. 430-435, 2010.
[8] ص. منافی و م. جعفریان، "سنتز نانوذرات باریم تیتانات با درجه بلورینگی بالا به روش هیدروترمال"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 7، صفحه 13-20، 1393.
[9] م. جزیره پور و م. ح. شمس، "سنتز و مشخصهیابی نانومیلههای Fe2O3/BaFe12O19 و بررسی خواص مغناطیسی آنها"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 11، صفحه 139-148، 1396.
[10] J. Wan, X. Wang & et al., “Magnetoelectric CoFe2O4-Pb(Zr, Ti)O3 composite thin films derived by a sol-gel processˮ, J. Appl. Phys. Lett., Vol. 86, pp. 122501-122503, 2005.
[11] J. Cao, W. Fu & et al., “Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocompositesˮ, J. Phys. Chem. B, Vol. 113, pp. 4642-4647, 2009.
[12] R. J. Pandya, U. S. Joshi & O. F. Caltun, “Microstructural and Electrical Properties of Barium Strontium Titanate and Nickel Zinc Ferrite Compositesˮ, Procedia Materials Science, Vol. 10, pp. 168 – 175, 2015.
[13] P. Pahuja, R. K. Kotnala & R. P. Tandon, “Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferriteˮ, Journal of Alloys and Compounds, Vol. 617, pp. 140-148, 2014.
[14] K. Verma & S. Sharma, “Impedance spectroscopy and dielectric behavior in barium strontium titanate–nickel zinc ferrite compositesˮ, physica status solidi B, Vol. 249, pp. 209-216, 2012.
[15] C. M. Kanamadi, B. K. Das, C. W. Kim & et al., “Dielectric and magnetic properties of (x) CoFe2O4 + (1−x) Ba0.8Sr0.2TiO3 magnetoelectric compositesˮ, Materials Chemistry and Physics, Vol. 116, pp. 6-10, 2009.
[16] D. R. Patil & B. K. Chougule, “Studies on magnetic and magnetoelectric properties of the NiFe2O4–Ba0.7Sr0.3TiO3 compositesˮ, Journal of Materials Science: Materials in Electronics, Vol. 20, pp. 398-402, 2009.
[17] M. Sivakumar, S. Kanagesan & et al., “Synthesis of CoFe2O4 powder via PVA assisted sol–gel processˮ, J. Mater. Sci.: Mater. Electron., Vol. 23, pp. 1045-1049, 2012.
[18] W. Li & L. Fa-Shen, “Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticlesˮ, Chin. Phys. B, Vol. 17, pp. 1858-1862, 2008.
[19] Hunyek, C. Sirisathitkul & P. Harding, “Synthesis and Characterization of CoFe2O4 particle by PVA sol-gel methodˮ, Adv. Mater. Res., Vol. 93-94, pp. 659-663, 2010.
[20] N. C. Pramanik, N. Anisha & et. al., “Preparation of BaxSr1−xTiO3 (x = 0–1) nanoparticles by wet-chemical decomposition of Ti-complex and study their dielectric propertiesˮ, Journal of Alloys and Compounds, Vol. 476, pp. 524–528, 2009.
[21] Q. Lu, D. Chen & et. al., “Preparation and characterization of Ba1-xSrxTiO3 (x=0.1, 0.2) fibers by sol–gel process using catechol-complexed titanium isopropoxideˮ, Journal of Alloys and Compounds, Vol. 358, pp. 76–81, 2003.
[22] W. Li, Z. Xu & et. al., “Sol–gel synthesis and characterization of Ba(1−x) SrxTiO3 ceramicsˮ, Journal of Alloys and Compounds, Vol. 499, pp. 255-258, 2010.
[23] X. F. Zhang, Q. Xu & et. al., “Low-temperature synthesis of superfine barium strontium titanate powder by the citrate methodˮ, Ceramics International, Vol. 36, pp. 1405–1409, 2010.
[24] C. Mao, X. Dong & et. al., “Nonhydrolytic sol–gel synthesis and dielectric properties of ultrafine-grained and homogenized Ba0.70Sr0.30TiO3ˮ, Ceramics International, Vol. 34, pp. 45–49, 2008.
[25] L. Q. Wang, H. M. Kang, D. F. Xue & C. H. Liu, “Synthesis and characterization of Ba0.5Sr0.5TiO3 nanoparticlesˮ, Journal of Crystal Growth, Vol. 311, pp. 605–607, 2009.
[26] S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim & K. S. Chun, “Complex Permeability and Permittivity and Microwave Absorption of Ferrite-Rubber Composite in X-band Frequenciesˮ, IEEE Trans. Magn., Vol. 27, pp. 5462–5464, 1991.
[27] L. Li, Q. Li, C. Xiang, X. Liang & B. Hao, “Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic propertiesˮ, Synthetic. Metals, Vol. 160, pp. 28-34, 2010.
[28] D. M. Pozar, “Microwave Engineeringˮ, John Wiley & Sons, New York, 2005.
[29] L. Singh, I. W. Kim, B. C. Sin, U. S. Rai, S. H. Hyun & Y. Lee, “Combustion synthesis of nanostructured Ba0.8(Ca, Sr)0.2TiO3 ceramics and their dielectric propertiesˮ, Ceram. Int., Vol. 41, pp. 12218-12228, 2015.
[30] T. Hu, J. Juuti, H. Jantunen & T. Vilkman, “Dielectric properties of BST/polymer compositeˮ, J. Eur. Ceram. Soc., Vol. 27, pp. 3997-4001, 2007.
[31] E. A. Nenasheva, N. F. Kartenko, I. M. Gaidamaka, O. N. Trubitsyna, S. S. Redozubov & A. I. Dedyk, et al., “Low loss microwave ferroelectric ceramics for high power tunable devicesˮ, J. Eur. Ceram. Soc., Vol. 30, pp. 395-400, 2010.
[32] J. Chameswary & M. T. Sebastian, “Butyl rubber–Ba0.7Sr0.3TiO3 composites for flexible microwave electronic applicationsˮ, Ceram. Int., Vol. 39, pp. 2795-2802, 2013.
_||_