ساخت و مشخصه یابی نانوکامپوزیت (Fe,Ti)3Al-Al2O3 از طریق واکنش احیای هماتیت توسط آلومینیوم
محورهای موضوعی : سنتز موادمهدی رفیعی 1 * , محمد حسین عنایتی 2 , فتح الله کریم زاده 3
1 - دانشگاه ازاد اسلامی، واحد نجف آباد
2 - دانشگاه صنعتی اصفهان، دانشکده مهندسی مواد
3 - دانشگاه صنعتی اصفهان، دانشکده مهندسی مواد
کلید واژه: نانوکامپوزیت, آسیاب کاری, آنالیز حرارتی افتراقی, ترکیب بین فلزی,
چکیده مقاله :
در این پژوهش نانوکامپوزیت (Fe,Ti)3Al-Al2O3 از طریق واکنش احیای هماتیت توسط آلومینیوم در حین فرایند آسیاب کاری سنتز شد. بدین منظور پودرهای Al، Ti و Fe2O3 با نسبت اتوکیومتری 1:1:3 در یک آسیاب گلوله ای با هم مخلوط شدند. تغییرات ساختاری ذرات پودر و همچنین مورفولوژی ذرات پودر در زمان های مختلف آسیاب کاری توسط آزمون های پراش پرتو ایکس (XRD) و میکروسکوپ الکترونی روبشی (SEM) مطالعه شدند. عملیات آنیل و همچنین آنالیز حرارتی افتراقی (DTA) جهت بررسی رفتار حرارتی ذرات پودر انجام شد. مشاهده شد واکنش تولید نانوکامپوزیت (Fe,Ti)3Al-Al2O3 در حین آسیاب کاری در دو مرحله اتفاق می افتد. ابتدا احیای هماتیت توسط آلومینیوم و در ادامه واکنش میان عناصر آهن، آلومینیوم و تیتانیوم و تشکیل ترکیب بین فلزی (Fe,Ti)3Al . اندازه دانه و کرنش داخلی ذرات پودر پس از 100 ساعت آلیاژسازی برای فاز Al2O3 به ترتیب برابر با 20 نانومتر و 3 درصد محاسبه شد. همچنین آسیاب کاری به مدت زمان طولانی تر باعث وقوع واکنش احیای هماتیت توسط آلومینیوم قبل از ذوب آلومینیوم در حین آنالیز DTA شد.
In this research the (Fe,Ti)3Al-Al2O3 nanocomposite was synthesized via the reduction of Fe2O3 by Al during mechanical alloying (MA). For this purpose the Al, Ti and Fe2O3 powders were mixed with molar ratio of 3:1:1in a planetary ball mill. The structural and morphology of powder particles during different milling times were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). In order to study the thermal behavior of powder particles, Heat treatment and differential thermal analysis (DTA) were done. It was found that, the reaction of nanocomposite formation is occurred in two stages during MA. The first and second reactions were reduction of Fe2O3 by Al and (Fe,Ti)3Al formation, respectively. The crystallite size and internal strain of powder particles for Al2O3 phase after 100 h of MA, were 20 nm and 3%, respectively. Also ball milling for long time led to the reduction of Fe2O3 by Al before Al melting during DTA.
[1] K. Matsuura, Y. Obara & M. Kudoh, “Fabrication of TiB2 Particle Dispersed FeAl-based Composites by Self-propagating High-temperature Synthesisˮ, ISIJ. Int., Vol. 46, pp. 871–874, 2006.
[2] B. G. Park, S. H. Ko, Y. H. Park & J. H. Lee, “Mechanical properties of in situ Fe3Al matrix composites fabricated by MA–PDS processˮ, Intermetallics, Vol. 14, pp. 660-665, 2006.
[3] A. V. Leonov, V. I. Fadeeva, O. E. Gladilina & H. Matyja, “Structure of Al50Ti50−xFex alloys prepared by mechanical alloying and subsequent annealing, Journal of Alloys and Compoundsˮ, Vol. 281, pp. 275–279, 1998.
[4] S. M. Zhu, M. Tamura, K. Sakamoto & K. Iwasaki, “Effect of heating rate on the combustion synthesis of intermetallicsˮ, Mater. Sci. Eng, Vol. 292A, pp. 83–89, 2000.
[5] R. T. Fortnum & D. E. Mikkola, “Effects of molybdenum, titanium and silicon additions on the DO3 ⇄ B2 transition temperature for alloys near Fe3Alˮ, Mater. Sci. Eng, Vol. 91A, pp. 223–231, 1987.
[6] M. G. Mendiratta, S. K. Ehlers & H. A. Lipsitt, “DO3-B2 phase relations in Fe- Al -Ti alloysˮ, Metall. Trans, Vol. 18A, pp. 509–518, 1987.
[7] N. J. Welham, “Mechanical activation of the formation of an alumina-titanium trialuminide compositeˮ, Intermetallics, Vol. 6, pp. 363-368, 1998.
[8] S. Schicker, D. E. Garcia, I. Gorlov, R. Janssen & N. Claussen, “Wet milling of Fe/Al/Al2O3 and Fe2O3/Al/Al2O3 powder mixturesˮ, J. Am. Ceram. Soc., Vol. 82, pp. 2607–2612, 1999.
[9] D. Horvitz, I. Gotman, E. Y. Gutmanas & N. Claussen, “in situ processing of dense Al2O3–Ti aluminide interpenetrating phase compositesˮ, J. Eur. Ceram. Soc., Vol. 22, pp. 947–954, 2002.
[10] C. Suryanarayana, “Mechanical alloying and millingˮ, Prog. Mater. Sci., Vol. 46, pp. 1–184, 2001.
[11] R. Sedighi, M. Rajabi & S. M. Rabiee, “Synthesis and Thermal Stability of Nanocrystalline Mg-6Al-1Zn-1 Si Alloy Prepared Via Mechanical Alloyingˮ, Journal of Advanced Materials and Processing, Vol. 3, pp. 67-76, 2015.
[12] ع، حیدری مقدم، ح، یوزباشی زاده، و. دشتی زاده و ع، کفلو، "سنتز ترکیب بین فلزی نانوساختار Zr3Coبا خاصیت جذب بالا به روش آلیاژسازی مکانیکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره سوم، پاییز 1394.
[13] ع، حاج علیلو، ع، سعیدی و م. عباسی، "تولید کاربید تیتانیوم و نانوکامپوزیت TiC-Al2O3 با استفاده از روتیل به روش سنتز احتراقی و آلیاژسازی مکانیکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال چهارم، شماره اول، بهار 1389.
[14] D. L. Zhang, Z. H. Cai & G. Adam, “The mechanical milling of Al/TiO2 compositr powdersˮ, JOM, Vol. 56, pp. 53–56, 2004.
[15] M. Khodaei, M. H. Enayati & F. Karimzadeh, “Mechanochemically synthesized Fe3Al–Al2O3 nanocompositeˮ, J. Alloys Compd., Vol. 467, pp. 159–162, 2009.
[16] M. Rafiei, M. H. Enayati & F. Karimzadeh, “Mechanochemical synthesis of (Fe,Ti)3Al-Al2O3 nanocomposite, Journal of Alloys and Compoundsˮ, Vol. 488, pp. 144–147, 2010.
[17] G. K. Williamson & W. H. Hall, “X-ray Line Broadening from Filed Aluminium and Wolframˮ, Acta. Metall., Vol. 1, pp. 22–31, 1953.
[18] E. A. Brandes & G. B. Brook, “Smithells Metals HandBookˮ, Butterworth-Heinemann, Oxford, 1999.
[19] M. Rafiei, M. H. Enayati & F. Karimzadeh, “Characterization and formation mechanism of nanocrystalline (Fe,Ti)3Al intermetallic compound prepared by mechanical alloyingˮ, Journal of Alloys and Compounds, Vol. 480, pp. 392–396, 2009.
_||_