ارزیابی عملکرد ضد خوردگی پوشش اپوکسی استر در حضور نسل جدید رنگدانههای هیبریدی تشکیل یافته از عصاره گلگاوزبان و استات روی
محورهای موضوعی : خوردگی و حفاظت موادامیرسالار دهقانی 1 , مهدی طباطبایی 2 , ,وحید ابوئی مهریزی 3 *
1 - دانشگاه آزاد اسلامی واحد علوم تحقیقات
2 - دپارتمان مهندسی مواد/ گروه خوردگی و حفاظت مواد/ دانشگاه تربیت مدرس
3 - مهندسی و علم مواد، دانشکده ی فنی، دانشگاه آزاد اسلامی واحد کرج، ایران
کلید واژه: خوردگی, EIS, رنگدانه هیبریدی آلی/معدنی, اپوکسی استر, XPS,
چکیده مقاله :
در این مطالعه تأثیر رنگدانه آلی/معدنی هیبریدی بر پایه عصاره گلگاوزبان و استات روی بر خواص خوردگی پوشش اپوکسی استر بررسی شد. نتایج طیفسنجی امپدانس الکتروشیمیایی (EIS) نشان داد که خوردگی فولاد بهطور قابلتوجهی در محلول کلرید در حضور رنگدانه هیبریدی ممانعت میشود. نتایج بهدستآمده از میکروسکوپ الکترونی روبشی (SEM)، طیفسنجی اشعه ایکس فوتوالکترون (XPS)، طیفسنجی مادونقرمز تبدیل فوریه (FTIR)، آزمون طیفسنج مرئی فرابنفش (UV-Vis) و زاویه تماس استاتیک تشکیل کیلیتها و کمپلکسهای بازدارنده خوردگی در ساختار رنگدانه را تائید کرد. نتایج نشان داد حضور رنگدانه هیبریدی نه تنها سدی در برابر نفوذ عوامل خورنده بود، بلکه خواص بازدارندگی فعال پوشش اپوکسی استر را نیز بهطور مؤثری افزایش داد. بازده بازدارندگی % 3/89 همین نکته را نشان میدهد. مقدار امپدانس فرکانس پایین پوشش اپوکسی استر در غیاب و حضور رنگدانه هیبریدی به ترتیب از MΩ cm2 344 به MΩ cm2 6056 افزایش یافت. این پارامتر پس از 45 روز برای نمونه خام و حاوی رنگدانه به ترتیب MΩ cm2 2/4 و MΩ cm2 200 محاسبه شد که نشاندهنده نقش رنگدانه در افزایش عملکرد سدی پوشش است. افزایش مقاومت کلی معادل Ω cm2 16343 پوشش اپوکسی استر حاوی رنگدانه با خراش مصنوعی نقش بازدارندگی فعال رنگدانه هیبریدی را نشان میدهد.
The impact of hybrid organic/inorganic pigments based on the herbal extract of Echium amoenum and zinc acetate on the corrosion protection performance of epoxy ester coating was investigated in this paper. The electrochemical impedance spectroscopy (EIS) measurement showed that the presence of hybrid pigment can expressively prevent the corrosion of steel in saline solution. The results of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), visible ultraviolet (UV-Vis) spectroscopy and static contact angle proved the formation of chelates and protective complexes in the pigment structure. The inhibition efficiency of 89.3% shows the same point. The low-frequency impedance value of epoxy coating increased in the absence and presence of the hybrid pigment from 344 MΩ cm2 to 6056MΩ cm2. This parameter was calculated after 45 days for the blank coating and the one containing pigment 4.2 MΩ cm2 and 200 MΩ cm2, respectively, which indicates the role of pigment in increasing the barrier performance of the coating. Increasing the overall resistance values equivalent to 16343 Ω.cm2 in the epoxy coating containing pigments with synthetic scratches shows the active inhibitory role of hybrid pigments.
[1] C. Yu, M.S. De Luna, A. Marotta, C. Ponti, I. Esposito, F. Scherillo, Z. Wang, X. Zhang, H. Xia & M. Lavorgna, "NIR light-triggered self-healing waterborne polyurethane coatings with polydopamine-coated reduced graphene oxide nanoparticles", Progress in Organic Coatings, vol. 161, pp. 10649, 2021.
[2] Y. Ma, H. Huang, H. Zhou, M. Graham, J. Smith, X. Sheng, Y. Chen, L. Zhang, X. Zhang, E. Shchukina & D. Shchukin, "Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide", Journal of Materials Science & Technology, vol. 95, pp. 95-104, 2021.
[3] K. Cao, Z. Yu, D. Yin, L. Chen, Y. Jiang & L. Zhu, "Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances", Progress in Organic Coatings, vol. 143, pp. 105629, 2020.
[4] D. Yin, Z. Yu, L. Chen & K. Cao, "Enhancement of the anti-corrosion performance of composite epoxy coatings in presence of BTA-loaded copper-based metal-organic frameworks", International Journal of Electrochemical Science, vol. 14, pp. 4240-4253, 2019.
[5] H. Yan, W. Li, H. Li, X. Fan & M. Zhu, "Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating", Progress in Organic Coatings, vol. 135, pp.156-167, 2019.
]6[ م. بقال زاده، خ. قیصری و ح. معتمدی، "اثر محافظتی بیوفیلم حاصل از فعالیت باکتری بیهوازی احیاکنندۀ سولفات بر مقاومت به خوردگی فولاد میکروآلیاژ"API X42، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 4، صفحه 63-51، 1400.
[7] H. Wang, S. L. Huang, Y. J. Zuo, T. Zhou & L. R. Zhang, "Corrosion resistance of lamellar aluminium pigments coated by SiO2 by sol-gel method", Corrosion Science, vol. 53, no. 1, pp.161-167, 2011.
[8] H. Bi & J. Sykes, "Cathodic disbonding of an unpigmented epoxy coating on mild steel under semi-and full-immersion conditions", Corrosion Science, vol. 53, no. 10, pp. 3416-3425, 2011.
]9[ م. بزرگ، ت. شهرابی فراهانی و ف. اکتفا، "استفاده از عصاره گیاه میرتکس به عنوان بازدارنده خوردگی فولاد در محلول اسید کلریدریک". فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 4، صفحه 119-109، 1396.
[10] M. Hernandez, F. Galliano & D. Landolt, "Mechanism of cathodic delamination control of zinc–aluminum phosphate pigment in waterborne coatings", Corrosion Science, vol. 46, no. 9, pp. 2281-2300, 2004.
[11] M. Gimeno, S. Chamorro, R. March, E. Oró, P. Pérez, J. Gracenea & J. Suay, "Anticorrosive properties enhancement by means of phosphate pigments in an epoxy 2k coating". Assessment by NSS and ACET, Progress in Organic Coatings, vol. 77, pp. 2024-2030, 2014.
[12] M. Hernandez, J. Genesca, J. Uruchurtu, F. Galliano & D. Landolt, "Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanisms of steel in waterborne coatings", Progress in Organic Coatings., vol. 56, no. 2, pp. 199-206, 2006.
[13] M. Miao, X.-Y. Yuan, X.-G. Wang, Y. Lu & J. K. Liu, "One step self-heating synthesis and their excellent anticorrosion performance of zinc phosphate/benzotriazole composite pigments", Dyes and Pigments, vol. 141, pp. 74-82, 2017.
[14] J. Cheng, M. Xu, P. Cheng, W. Zhang, N. Li, Y. Wang, J. Yang, K. Liang, P. Li, H. Yu & X. Qiu, "Metal ions ‘sewing’ isoporous membranes with polystyrene-block-poly (acrylic acid) block copolymer", Journal of Membrane Science, vol. 587, pp. 117086, 2019
[15] T. C. Chou, "The combination index (CI < 1) as the definition of synergism and of synergy claims", Synergy, vol. 7, pp. 49-50, 2018.
[16] K. R. Bacca, N. F. Lopes, J. B. Marcolino, F. Dos Santos Grasel & E. M. Da Costa, "Performance of Quebracho extract as eco‐friendly corrosion inhibitor for SAE 1010 steel in the oil field environment", Materials and Corrosion, vol. 71, pp. 155-165, 2020.
[17] M.A. Faiz, C.C. Azurahanim, S. Raba'ah & M. Ruzniza, "Low cost and green approach in the reduction of graphene oxide (GO) using palm oil leaves extract for potential in industrial applications", Results in Physics, vol. 16, pp. 102954, 2020.
[18] F. C. Mascarenhas, N. Sykam, M. Selvakumar & M. G. Mahesha, "Green reduction of graphene oxide using Indian gooseberry (amla) extract for gas sensing applications", Journal of Environmental Chemical Engineering, vol. 8, no. 2, pp. 103712, 2020.
[19] A. Abraham Daniel, P. Jeya, D. Ramaraj, N. Bernaurdshaw & V. Vairathevar Sivasamy, "Effect of components of solanum trilobatum-L extract as corrosion inhibitor for mild steel in acid and neutral medium", Materials Research Express, vol. 6, no. 3, pp. 036527, 2019.
[20] A. Amirudin, C. Barreau, R. Hellouin & D. Thierry, "Evaluation of anti-corrosive pigments by pigment extract studies, atmospheric exposure and electrochemical impedance spectroscopy", Progress in Organic Coatings, vol. 25, pp. 339-355, 1995
]21[ س. جهادی و م. نصر اصفهانی، "بازدارندگی خوردگی پلیاتیلن گلایکل روی خوردگی فولاد ساده کربنی در محیط اسیدسولفوریک و هم نیروزایی آن با شیف باز"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 2، صفحه 117-101، 1397.
[22] S. H. Alrefaee, K. Y. Rhee, C. Verma, M. Quraishi & E. E. Ebenso, "Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements", Journal of Molecular Liquids, vol. 321, pp. 114666, 2021.
[23] B. Müller, "Citric acid as corrosion inhibitor for aluminium pigment", Corrosion science, vol. 46, pp. 159-167, 2004.
[24] B. Müller, W. Kläger & G. Kubitzki, "Metal chelates of citric acid as corrosion inhibitors for zinc pigment", Corrosion science, vol. 39, pp. 1481-1485, 1997.
[25] M. Sayyah, H. Boostani, S. Pakseresht & A. Malaieri, "Efficacy of aqueous extract of Echium amoenum in treatment of obsessive–compulsive disorder", Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, pp. 1513-1516, 2009.
[26] M. Sayyah, M. Sayyah & M. Kamalinejad, "A preliminary randomized double blind clinical trial on the efficacy of aqueous extract of Echium amoenum in the treatment of mild to moderate major depression", Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 30, pp. 166-169, 2006.
[27] M. Mehrabani, N. Ghassemi, E. S. A. Ghannadi & M. Shams-Ardakani, "Main phenolic compound of petals of Echium amoenum Fisch. and CA Mey., a famous medicinal plant of Iran", DARU Journal of Pharmaceutical Sciences, vol. 13, pp. 65-69, 2005.
[28] M. Rabbani, S. Sajjadi, G. Vaseghi & A. Jafarian, "Anxiolytic effects of Echium amoenum on the elevated plus-maze model of anxiety in mice", Fitoterapia, vol. 75, pp. 457-464, 2004.
[29] M. Tabatabaei majd, G. Bahlakeh, A. Dehghani, B. Ramezanzadeh & M. Ramezanzadeh, "A green complex film based on the extract of Persian Echium amoenum and zinc nitrate for mild steel protection in saline solution; Electrochemical and surface explorations besides dynamic simulation", Journal of Molecular Liquids, vol. 291, pp. 111281, 2019.
[30] G. Blustein, R. Romagnoli, J. Jaén, A. Di Sarli & B. Del Amo, "Zinc basic benzoate as eco-friendly steel corrosion inhibitor pigment for anticorrosive epoxy-coatings", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 290, 7-18, 2006.
[31] M. Maria, W. Ikhmal, M. Amirah, S. Manja, S. Syaizwadi, K. Chan, M. Sabri & A. Adnan, "Green approach in anti-corrosion coating by using Andrographis paniculata leaves extract as additives of stainless steel 316L in seawater", International Journal of Corrosion and Scale Inhibition, vol. 8, pp.644-658, 2019.
[32] J. O. Nilsson, C. Törnkvist & B. Liedberg, "Photoelectron and infrared reflection absorption spectroscopy of benzotriazole adsorbed on copper and cuprous oxide surfaces", Applied Surface Science, vol. 37, pp. 306-326, 1989.
[33] G. W. Poling, "Reflection infra-red studies of films formed by benzotriazole on Cu", Corrosion Science, vol. 10, pp. 359-370, 1970.
[34 G. Kim, J. Lee, T. Liu & C. P. Grey, "Characterizing Nitrogen Sites in Nitrogen-Doped Reduced Graphene Oxide: A Combined Solid-State 15N NMR, XPS, and DFT Approach", The Journal of Physical Chemistry C, vol. 125, pp. 10558-10564, 2021.
[35] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour & M. Atieh, "XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods", Ceramics International, vol. 45, pp. 14439-14448, 2019.
[36] M. P. Casaletto, V. Figà, A. Privitera, M. Bruno, A. Napolitano & S. Piacente, "Inhibition of Cor-Ten steel corrosion by “green” extracts of Brassica campestris", Corrosion Science, vol. 136, pp. 91-105, 2018.
[37] F. Priante, M. Salim, L. Ottaviano & F. Perrozzi, "XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates", Nanotechnology, vol. 29, pp. 075704, 2018.
[38] B. Li, X. Jin, J. Lin & Z. Chen, "Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution, Journal of Cleaner Production", vol. 189, pp. 128-134, 2018.
]39[ ا. دانایی، ع. حسین زاده و م. مداحی، "بررسی اثرات بازدارندگی خوردگی دو مشتق تیازولی بر آلیاژ فولاد در اسید کلریدریک"، فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 4، صفحه 24-13، 1397.
]40[ آ. فتاح الحسینی و ص. مؤمنی، "تأثیر بازدارندهای بر پایه ایمیدازولین بر خوردگی فولاد API 5L Gr.B در آب دریای ساختگی"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 1، صفحه 36-29، 1394.
[41] Y. Shao, C. Jia, G. Meng, T. Zhang & F. Wang, "The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel", Corrosion Science, vol. 51, no. 2, pp. 371-379, 2009.
[42] J. Lange, A. Luisier & A. Hult, "Influence of crosslink density, glass transition temperature and addition of pigment and wax on the scratch resistance of an epoxy coating", Journal of Coatings Technology, vol. 69, pp. 77-82, 1997.
[43] M. Jouyandeh, F. Tikhani, M. Shabanian, F. Movahedi, S. Moghari, V. Akbari, X. Gabrion, P. Laheurte, H. Vahabi & M. R. Saeb, "Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy", Journal of Alloys and Compounds, vol. 829, pp. 154547, 2020.
[44] M. Golabadi, M. Aliofkhazraei, M. Toorani & A. S. Rouhaghdam, "Evaluation of La containing PEO pretreatment on protective performance of epoxy coating on magnesium", Progress in Organic Coatings, vol. 105, pp. 258-266, 2017.
[45] X. Yuan, Z. F. Yue, X. Chen, S. F. Wen, L. Li & T. Feng, "The protective and adhesion properties of silicone-epoxy hybrid coatings on 2024 Al-alloy with a silane film as pretreatment", Corrosion Science, vol. 104, pp. 84-97, 2016.
[46] L. S. Živković, J. B. Bajat, J. P. Popić, B. V. Jegdić, S. Stevanović & V. B. Mišković-Stanković, "Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment", Progress in Organic Coatings, vol. 79, pp. 43-52, 2015.
_||_