تاثیر نانو ذرات آلومینا، تعداد پاس اختلاط و سرعت دوران در رفتار مکانیکی آلیاژ منیزیم AM60 جوشکاری شده به روش اصطکاکی- اغتشاشی (FSW)
محورهای موضوعی : عملیات حرارتیآرش بهزادی نژاد 1 , عباس محصل 2 , حمید امیدوار 3 , نادر ستوده 4
1 - گروه مهندسی مواد- دانشکده فنی و مهندسی- دانشگاه یاسوج- یاسوج -ایران
2 - گروه مهندسی مواد- دانشکده فنی و مهندسی- دانشگاه یاسوج- یاسوج- ایران
3 - دانشکده مهندسی معدن و متالورژی دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)- تهران- ایران
4 - گروه مهندسی مواد- دانشکده فنی و مهندسی- دانشگاه یاسوج- یاسوج - 74831-75918- ایران
کلید واژه: جوشکاری اصطکاکی-اغتشاشی, آلیاژ AM60, سرعت دوران, پاس اختلاط, آگلومره,
چکیده مقاله :
در پژوهش حاضر رفتار مکانیکی قطعات آلیاژی AM60 جوشکاری شده به روش اصطکاکی اغتشاشی تحت تاثیر تعداد پاس اختلاط و حضور نانو ذرات آلومینیا بررسی شد. بررسی های میکروسکوپی نشان داد افزایش سرعت دوران ابزار کار در ناحیه بهم خورده جوش باعث افزایش دما و افزایش کرنش و در نتیجه کاهش اندازه دانه و افزایش بیشتر دما باعث رشد دانه می شود. نتایج به وقوع تبلور مجدد دینامیکی در منطقه اختلاط یافته جوش، وقوع تبلور مجدد ناقص در منطقه متاثر از تغییرشکل پلاستیک و حرارت و رشد دانه ها در منطقه متاثر از حرارت جوش دلالت داشت. سرعت دوران rpm1200به عنوان سرعت دوران بهینه برای ریزدانگی، سختی و استحکام نهایی کششی استنتاج شد. در حضور نانو ذرات، اندازه دانه ها کاهش یافت اما بدلیل رقابت دو عامل بالا سرعت دوران بهینه تغییر نکرد. در عدم حضور نانوذرات، افزایش تعداد پاس اختلاط منجر به کاهش اندازه دانه ها شد اما در نمونه های دارای نانوذرات آلومینا، هرچند که وجود ذرات تقویت کننده منجر به کاهش اندازه دانه ها شد ولی افزایش تعداد پاس اختلاط، تاثیر محسوس در کاهش اندازه دانه ها نداشت. نتایج XRD نشان داد اختلاط مواد در حین عملیات جوشکاری منجر به حلالیت ترکیب Mg17Al12 می شود. در نمونه های با نانو ذرات آلومینا نسبت به نمونه های بدون ذرات، در یک سرعت دوران معین، سختی و استحکام بیشتر افزایش یافت. با افزایش سرعت دوران، میزان نش های برشی در حین عملیات جوشکاری افزایش یافته و منجر به کاهش اندازه ذرات آلومینای آگلومره شده و بهبود چقرمگی شد.
In this study, effects of alumina nanoparticles and stirring pass in mechanical behavior of friction stir welded AM60 magnesium alloy were studied. Microscopic analysis showed occurrence of dynamic recrystallization during plastic deformation in weld area and mechanical tests revealed optimum condition for hardness and tensile strength could be produced in 1200 rpm rotational speed not only in absence of reinforcing alumina nanoparticles but also in presence of them. Opposing effects of higher temperatures in grain growth and greater strains in lowering grain size should be considered. In lacking of alumina nanoparticles, grain size diminished with increasing stirring pass but in being nanoparticles, predominant mechanism in depressing grain size came from nanoparticles and negligible effect of stirring pass in grain size was found. XRD results showed increasing solubility of γ-Mg phase as a result of stirring operation. Better toughness performance of weldment was produced via decreasing size of agglomerated alumina particles. Higher hardness and greater ultimate tensile strength were achieved in specimens with alumina nanoparticle with increasing rotational speed. In a constant rotational speed, higher hardness and greater ultimate tensile strength achieved in samples having alumina nanoparticles in contrast with free alumina nanoparticle samples
6- مراجع
[1]M. K. Kulekci, "Magnesium and its alloys applications in automotive industry", Int J Adv Manuf Technol, vol. 39, pp. 851–865, 2008.
[2]P. L. Threadgill, A. J. Leonard, H. R. Shercliff & P. J. Withers,"Friction stir welding of aluminium alloys", International Materials Reviews, vol. 54, pp. 49-93, 2009.
[3]M. Gupta & S. N. M. Ling, "Magnesium, Magnesium Alloys, and Magnesium Composites", John Wiley & Sons, 2010.
[4]F. Chai, D. T. Zhang & Y. Y. Li, "Effect of rotation speeds on microstructures and tensile properties of submerged friction stir processed AZ31 magnesium alloy", Materials Research Innovations, vol. 18, pp. 152-156, 2014.
[5] ا. عبداله زاده، ع. شکوه فر، ح. امیدوار، م. ع و صفرخانیان، م. ر. نادری، "تأثیر سرعت دورانی در جوشکاری اصطکاکی اختلاطی بر ریزساختار و خواص مکانیکی اتصال لبه رویهم آلیاژ رویهم آلیاژ AA545"، فرآیندهای نوین در مهندسی مواد، سال 10، شماره 4، صفحه 55-71، 1395.
[6]J. Zhang, K. Liu, G. Huang, K. Chen, D. Xia, B. Jiang, A. Tang & F. Pan, "Optimizing the mechanical properties of friction stir welded dissimilar joint of AM60 and AZ31 alloys by controlling deformation behavior", Mater. Sci. Eng. A, vol. 773, pp. 174-184. 2020.
[7]J. Langari & F. Kolahan, "The effect of friction stir welding parameters on the microstructure, defects, and mechanical properties of AA7075-T651 aluminium alloy joints", Scientia Iranica B, vol. 24, pp. 2418-2430, 2019.
[8]Y. Bai, H. Su & C. Wu, "Enhancement of the Al/Mg Dissimilar Friction Stir Welding Joint Strength with the Assistance of Ultrasonic Vibration", Metals, vol. 11, pp. 1-16, 2021.
[9]X. C. Luo, D. T. Zhang, G. H. Cao, C. Qiu & D. L. Chen, "Multi-pass submerged friction stir processing of AZ61 magnesium alloy, Strengthening mechanisms and fracture behavior", J. Mater. Sci., vol. 54, pp. 8640–8654, 2019.
[10]X. Xiong, Y. Yang, J. Li, M. Li, J. Peng, C. Wen & X. Peng, "Research on the microstructure and properties of a multi-pass friction stir processed 6061Al coating for AZ31 Mg alloy", J. Magnes. Alloys, vol. 7, pp. 696–706, 2019.
[11]Q. Shang, D. R. Ni, P. Xue, B. L. Xiao, K. S. Wang & Z. Y. Ma, "An approach to enhancement of Mg alloy joint performance by additional pass of friction stir processing", J. Mater. Process. Technol., vol. 264, pp. 336–345. 2019.
[12]A. R. Eivani, M. Mehdizade, S. Chabok, J. Zhou, "Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy", J. Mater. Res. Technol, vol. 12, pp. 1946–1957, 2020.
[13]S. Richmire, K. Hall & M. Haghshenas, "Design of experiment study on hardness variations in friction stir welding of AM60 Mg alloy", Journal of Magnesium and Alloys, vol. 6, pp. 215–228, 2018.
[14]P. Bassani1, E. Gariboldi & A. Tuissi, "Calorimetric analysis of AM60 magnesium alloy", Journal of Thermal Analysis and Calorimetry, vol. 80, pp.739–747. 2005.
[15]U. F. Al-Qawabeha, "Effect of Heat Treatment on the Mechanical Properties, Microhardness, and Impact Energy of H13 Alloy Steel", International Journal of Scientific & Engineering Research, vol. 8, pp. 100-104, 2017.
[16]M. Azizieh, M. Mazaheri, Z. Balak, H. Kafashan & H. S. Kim, "Fabrication of Mg/Al12Mg17 in-situ surface nanocomposite via friction stir processing", Materials Science and Engineering A, vol. 712, pp. 655-662, 2018.
[17]M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave, and G. L. Dunlop, "The effect of aluminium content on the mechanical properties and microstructure of die cast binary magnesium-aluminium alloys". Materials Transactions, vol. 47, pp. 977-982. 2006.
[18] E. Aghion & B. Bronfin, "Magnesium Alloys Development towards the 21st Century". Materials Science Forum, vol. 350-351, pp. 19-30. 2000.
[19]A. A. Luo, "Recent magnesium alloy development for elevated temperature applications", International Materials Reviews, vol. 49, pp. 13-30. 2004.
[20] M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet & et al., "Magnesium alloy applications in automotive structures". JOM, vol. 60, pp. 57. 2008.
[21]S. Mironov, Y. Motohashi, R. Kaibyshev, H. Somekawa, T. Mukai, and K. Tsuzaki, "Development of fine-grained structure caused by friction stir welding process of a ZK60A magnesium alloy", Materials Transactions, vol. 50, pp. 610-617. 2009.
[22]S. Chowdhury, D. Chen, S. Bhole, X. Cao & P. Wanjara, "Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties", Metallurgical and Materials Transactions A, vol. 44, pp. 323-336, 2013.
[23]S. H. Abdollahi, F. Karimzadeh, M. H. Enayati, "Development of surface composite based on Mg–Al–Ni system on AZ31 magnesium alloy and evaluation of formation mechanism", Journal of Alloys and Compounds, vol. 623, pp. 335–341, 2015.
[24]B. W. Baker, E. S. K. Menon, T. R. Mcnelley, L. N. Brewer, B. El-Dasher, J. C. Farmer & et al.,"Processing-microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel", Metallurgical and Materials Transactions E, vol. 4, pp. 318-330, 2014.
[25]E. Horst & B. Mordike, "Magnesium technology. Metallurgy, design data, application", Springer-Verlag, Berlin Heidelberg, 2006.
[26] S. P. Kumar, M. Vigneshwar, S. T. Selvamani, A. S. Prakash & P. Hariprasath, "The Comparative Analysis on Friction Stir Welded and Gas Tungsten Arc Welded AZ91 Grade Magnesium Alloy Butt Joints", Materials Today, Proceedings vol. 4, pp. 6688-6696. 2017.
[27] L. Liu, G. Song, G. Liang & J. Wang, "Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B—mechanism and remedy". Materials Science and Engineering A, vol. 390, pp. 76-80, 2005.
[28] M. Ohring, "How engineering materials are strengthened and toughened" Materials Science, 1995.
[29] G. Padmanaban, V. Balasubramanian & G. M. Reddy, "Fatigue crack growth behaviour of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints", Journal of materials processing technology, vol. 211, pp. 1224-1233, 2011.
_||_