فناوریهای نوین در بازیابی همزمان گرمای نهان و آب از گازهای دودکش صنعتی: یک مطالعه مروری بر مبدلهای چگالشی
محورهای موضوعی : انرژی
1 - عضو هیات علمی/ دانشگاه آزاد سمنان
کلید واژه: بازیابی گرما, آب تقطیر شده, گاز دودکش صنعتی, مبدل حرارتی چگالشی, بهرهوری انرژی,
چکیده مقاله :
امروزه، در مواجهه با چالشهای دوگانه جهانی بهرهوری انرژی و بحران کمآبی، بازیابی گرمای اتلافی، بهویژه گرمای نهان موجود در گازهای دودکش صنعتی، به یک راهکار حیاتی تبدیل شده است. گازهای دودکش مرطوب که حاوی مقادیر قابل توجهی بخار آب هستند، پتانسیل بالایی برای بازیابی همزمان آب و انرژی محسوب میشوند. هدف از این مقاله ارائه یک مرور جامع و تحلیلی بر فناوری مبدلهای حرارتی چگالشی به عنوان یک فناوری پیشرو در این زمینه است. این مطالعه بر اصول عملکرد ترمودینامیکی، ویژگیهای طراحی، مزایای کلیدی و چالشهای اساسی این سیستمها تمرکز دارد. نتایج بررسیها نشان میدهد که پیادهسازی مبدلهای چگالشی، با بازیابی همزمان گرمای محسوس و نهان، منجر به افزایش چشمگیر بازده حرارتی فرآیند (۱۰ تا ۱۵ درصد) و همچنین تولید مقادیر قابل توجهی آب قابل استفاده مجدد (با نرخ بازیابی گزارششده تا ۸۹ درصد) میشود. علاوه بر این، فرآیند میعان به حذف همزمان آلایندههایی مانند SOx، ذرات معلق و حذف دود سفید قابل مشاهده کمک شایانی میکند. با این حال، چالشهای فنی مهمی نظیر خوردگی اسیدی ناشی از میعانات و افت فشار گاز دودکش، نیازمند انتخاب دقیق مواد مقاوم و بهینهسازی طراحی هستند. از منظر اقتصادی، اگرچه هزینههای سرمایهگذاری اولیه این سیستمها بالا است، اما صرفهجویی قابل توجه در مصرف سوخت و بازیابی آب، منجر به دورههای بازگشت سرمایه جذاب (۲ تا ۵ سال) میگردد. این مقاله ضمن مرور آخرین دستاوردهای پژوهشی (مانند یکپارچهسازی با سیکل رانکین آلی و بهبود طراحی)، نشان میدهد که مبدلهای چگالشی راهکاری مؤثر و اقتصادی برای توسعه پایدار صنعتی هستند، اما پیادهسازی موفق آنها نیازمند یک رویکرد یکپارچه فنی و اقتصادی است.
Today, facing the dual global challenges of energy efficiency and water scarcity, waste heat recovery, particularly the latent heat present in industrial flue gases, has become a vital solution. Moist flue gases, containing significant amounts of water vapor, represent a high-potential source for the simultaneous recovery of both water and thermal energy. The objective of this article is to provide a comprehensive and analytical review of Condensing Heat Exchangers as a leading technology for this purpose. This study focuses on the thermodynamic operating principles (cooling below the dew point), design characteristics, key advantages, and fundamental challenges of CHE systems. The review indicates that implementing CHEs, by recovering both sensible and latent heat, leads to a significant increase in process thermal efficiency (10-15%) and also results in the production of substantial amounts of reusable water (with reported recovery rates up to 89%). Furthermore, the condensation process aids in the co-removal of pollutants such as SOx, particulates, and the elimination of visible white smoke. However, critical technical challenges, primarily acidic corrosion from condensates and flue gas pressure drop, necessitate careful material selection (e.g., stainless steel) and optimal design. From an economic perspective, while the initial capital expenditure for these systems is high, the resulting fuel and water savings often lead to attractive payback periods (2-5 years). By reviewing recent research advancements (such as system integration with Organic Rankine Cycles and design improvements), this article concludes that CHEs are an effective and economically viable solution for sustainable industrial development, though their successful implementation demands an integrated techno-economic approach.
[1] Y. A. Cengel and M. A. Boles, Thermodynamics: an engineering approach. McGraw-Hill, 2002.
[2] R. Triebe, "Condensing heat recovery for industrial process applications," Process Heating, vol. 22, pp. 26-30, 2015.
[3] J. H. Copen, T. B. Sullivan, B. C. Folkedahl, G. F. Weber, and B. Carney, "PRINCIPLES OF FLUE GAS WATER RECOVERY SYSTEM," presented at the Power-Gen International Conference, 2005.
[4] R. Sinha and K. K. Thakur, "Heat recovery from condensing heat exchanger," Materials Today Proceedings, vol. 72, pp. 1965-1969, 2023.
[5] E. Ghamati and J. M. Roudaki, "Parametric and economic analysis of condensing heat exchanger combined with organic rankine cycle for heat and water recovery from boiler flue gas," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 237, no. 6, pp. 1295-1307, 2023.
[6] E. Ghamati and J. M. Roudaki, "A Novel Integrated Design for Heat and Water Recovery from Exhaust Flue Gas of Bandar Abbas Power Plant," Integrated Carbon Policy Design for Achieving Net-Zero Targets 1 Abhijeet Acharya Dynamic Economic Analysis between Renewable Energy, Carbon Dioxide Emissions, Trade and GDP based on VECM Granger test and Wavelet Analysis, p. 26, 2022.
[7] Y. Wang, J. Jiao, Y. Dai, Z. Ke, Q. Zhao, and F. Li, "Study on heat transfer characteristics of flue gas condensation in narrow gap heat exchangers," Thermal Science, vol. 27, no. 6 Part A, pp. 4681-4693, 2023.
[8] H. Choi, W. Yang, Y. Lee, and C. Ryu, "Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser," Energies (19961073), vol. 17, no. 19, 2024.
[9] L. Mu, S. Wang, J. Lu, G. Liu, L. Zhao, and Y. Lan, "Effect of flue gas condensing waste heat recovery and its pressure drop on energy saving and carbon reduction for refinery heating furnace," Energy, vol. 279, p. 128081, 2023.
[10] Q. Chen et al., "Condensing boiler applications in the process industry," Applied Energy, vol. 89, no. 1, pp. 30-36, 2012.
[11] S. S. M. Shamsi, A. A. Negash, G. B. Cho, and Y. M. Kim, "Waste heat and water recovery system optimization for flue gas in thermal power plants," Sustainability, vol. 11, no. 7, p. 1881, 2019.
[12] K. Jeong, M. J. Kessen, H. Bilirgen, and E. K. Levy, "Analytical modeling of water condensation in condensing heat exchanger," International Journal of Heat and Mass Transfer, vol. 53, no. 11-12, pp. 2361-2368, 2010.
[13] J. Uotila, "Heat recovery and environmental impacts of flue gas condensing," 2015.
[14] M. Terhan and K. Comakli, "Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas," Applied Thermal Engineering, vol. 100, pp. 1007-1015, 2016.
[15] I. Z. Famileh and J. A. Esfahani, "Experimental investigation of wet flue gas condensation using twisted tape insert," International Journal of Heat and Mass Transfer, vol. 108, pp. 1466-1480, 2017.
[16] M. Shuangchen, C. Jin, J. Kunling, M. Lan, Z. Sijie, and W. Kai, "Environmental influence and countermeasures for high humidity flue gas discharging from power plants," Renewable and Sustainable Energy Reviews, vol. 73, pp. 225-235, 2017.
[17] J. Wang, J. Hua, L. Fu, Z. Wang, and S. Zhang, "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, vol. 171, pp. 956-970, 2019/03/15/ 2019.
[18] N. Fedorova, P. Aziziyanesfahani, V. Jovicic, A. Zbogar-Rasic, M. J. Khan, and A. Delgado, "Investigation of the concepts to increase the dew point temperature for thermal energy recovery from flue gas, using Aspen®," Energies, vol. 12, no. 9, p. 1585, 2019.
[19] J. E. Prata and J. R. Simões-Moreira, "Water recovery potential from flue gases from natural gas and coal-fired thermal power plants: A Brazilian case study," Energy, vol. 186, p. 115780, 2019.
[20] Z. Cui, Q. Du, J. Gao, R. Bie, and D. Li, "Development of a direct contact heat exchanger for energy and water recovery from humid flue gas," Applied Thermal Engineering, vol. 173, p. 115214, 2020.
[21] O. Arsenyeva, J. J. Klemeš, P. Kapustenko, O. Fedorenko, S. Kusakov, and D. Kobylnik, "Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process," Energy, vol. 233, p. 121186, 2021/10/15/ 2021.
[22] J. Kabiesz and R. Kubica, "Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content," Energies, vol. 17, no. 7, p. 1670, 2024.
[23] S. Zhang, M. Shen, Y. Kang, and Z. Tang, "The Design and Experimental Study of a Deep-Condensing Waste Heat Recovery System for Boiler Flue Gas Based on Baoneng Heating Plant," Processes, vol. 13, no. 2, p. 306, 2025.