مطالعه اثرات محافظتی کروسین بر آسیب ایسکمی-بازخونرسانی تجربی کبد در موش صحرایی
محورهای موضوعی :
آسیب شناسی درمانگاهی دامپزشکی
بهرام عمواوغلی تبریزی
1
*
,
داریوش مهاجری
2
1 - دانشیار گروه آموزشی علوم درمانگاهی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
2 - استاد گروه آموزشی پاتوبیولوژی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
تاریخ دریافت : 1394/03/14
تاریخ پذیرش : 1394/06/28
تاریخ انتشار : 1394/06/01
کلید واژه:
کبد,
موش صحرایی,
ایسکمی-بازخونرسانی,
کروسین,
چکیده مقاله :
خونرسانی مجدد پس از ایسکمی ممکن است باعث بروز آسیب های متابولیکی و ساختاری در کبد شود. هدف از این مطالعه ارزیابی تاثیر کروسین بر آسیب ایسکمی-بازخونرسانی کبد در موش های صحرایی بود. بدین منظور 40 سر موش صحرایی نژاد ویستار بهطور تصادفی به چهار گروه 10 تایی تقسیم شدند: 1- گروه شاهد: موش های دستکاری نشده؛ 2- گروه کنترل جراحی: موش هایی که تحت جراحی به جز ایسکمی-بازخونرسانی قرار گرفته و نرمال سالین دریافت کردند؛ 3- گروه ایسکمی-بازخونرسانی: موش هایی که 45 دقیقه تحت ایسکمی، سپس 45 دقیقه دیگر در معرض خونرسانی مجدد کبد قرار گرفتند؛ 4- گروه ایسکمی-بازخونرسانی و تیمار با کروسین: موش هایی که با کروسین (200 میلی گرم بر کیلوگرم، داخل صفاقی) مورد پیش درمانی قرار گرفتند. موش ها پس از اخذ نمونه های خون و بافت کبد آسان کشی شدند. آلانین آمینو ترانسفراز، آسپارتات آمینو ترانسفراز و لاکتات دهیدروژناز سرم اندازه گیری شد. مالون دی آلدئید و فعالیت آنزیم های سوپراکسید دیسموتاز، کاتالاز، گلوتاتیون پراکسیداز و گلوتاتیون ردوکتاز در هموژنات بافت کبد اندازه گیری شد. همچنین، آسیب شناسی بافتی کبد توسط میکروسکوپ نوری انجام شد. در گروه 4، کروسین بهطور معنیداری (001/0>p) میزان افزایش یافته آنزیمهای شاخص آسیب کبد را کاهش و به طور معنی داری (001/0>p) میزان پراکسیداسیون لیپیدی را کاهش و سطوح کاهش یافته آنتی اکسیدان های کبد را افزایش داد. آسیب بافتی به طور معنی داری در کبدهای تیمار شده با کروسین کاهش پیدا کرد. این نتایج نشان می دهد که کروسین با خواص آنتیاکسیدانی خود، دارای اثرات محافظتی در برابر آسیب ایسکمی-بازخونرسانی کبد بوده و انتخاب مناسبی برای درمان آسیب های مرتبط با ایسکمی-بازخونرسانی کبد می باشد.
چکیده انگلیسی:
Ischemia followed by reperfusion (I/R) may cause metabolic and structural hepatic damage. The aim of this study was to investigate the effects of crocin on liver ischemia/reperfusion (I/R) injury in rats. For this purpose a total of 40 male Wistar rats were randomized into four groups of ten: (1) controls: including unmanipulated rats; (2) sham group: rats subjected to the surgical procedure, except for liver I/R, and given saline; (3) I/R group: rats underwent liver ischemia for 45 minutes followed by reperfusion for 45 minutes; (4) I-R/Crocin group: rats pretreated with crocin (200 mg/kg, ip). Blood samples and liver tissues were harvested from the rats, and then the rats were sacrificed. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels were determined. Malondialdehyde (MDA) and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were assayed in liver homogenates. Also liver tissue histopathology was evaluated by light microscopy. In group 4, crocin significantly (p<0.001) decreased the elevated levels of serum biomarkers of hepatic injury and significantly (p<0.001) decreased the lipid peroxidation and elevated the decreased values of hepatic antioxidants. Histopathological changes were significantly attenuated in crocin-treated livers. These results suggest that crocin because of its anti-oxidant potential, has protective effects against hepatic I/R injury, and is a potential therapeutic drug for ischemia reperfusion-related liver injury.
منابع و مأخذ:
Ahmad, A.S., Ansari, M.A., Ahmad, M., Saleem, S., Yousuf, S., Hoda, M.N., et al. (2005). Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacology, Biochemistry and Behavior, 81(4): 805-813.
Barber, D.A. and Harris, S.R. (1994). Oxygen free radicals and antioxidants: a review. Journal of American Pharmacists Association, NS34: 26-35.
Chance, B., Greenstein, D.S. and Roughton, R.J.W. (1952). The mechanism of catalase action. 1. Steady-state analysis. Archives of Biochemistry and Biophysics, 37(2): 301-321.
Chen, Y., Zhang, H., Tiana, X., Zhao, C., Cai, L., Liu, Y., et al. (2008). Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chemistry, 109(3):484-492.
Chouker, A., Martignoni, A., Schauer, R.J., Dugas, M., Schachtner, T., Kaufmann, I., et al. (2005). Alpha-gluthathione S-transferase as an early marker of hepatic ischemia/reperfusion injury after liver resection. World Journal of Surgery, 29: 528-534.
Claiborne, A. (1985). Catalase activity In: CRC Handbook of methods for oxygen radical research. Boca Raton, F.L. editor. Florida: CRC Press, Boca Raton, 99: 283-284.
Curtis, S.J., Mortiz, M. and Sondgrass, P.J. (1972). Serum enzymes derived from liver cell fractions. I. The response to carbon tetrachloride intoxication in rats. Gastroentrology, 62(1): 84-92.
Das, D.K. and Maulik, N. (1994). Antioxidant effectiveness in ischemia–reperfusion tissue injury. Methods in Enzymology, 233: 601-610.
El-Abhar, H.S., Abdallah, D.M. and Saleh S. (2003). Gastroprotective activity of Nigella sativa oil and its constituent, thymo-quinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. Journal of Ethnopharmacology, 84: 251-258.
Fraga, C.G., Leibovitz, B.E. and Tappel, A.L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4(3): 155-161.
Frei, A., Zimmermann, A. and Weigand, K. (1984). The N-terminal propeptide of collagen type III in serum reflects activity and degree of fibrosis in patients with chronic liver disease. Hepatology, 4(5): 830-834.
Gedik, E., Girgin, S., Ozturk, H., Obay, B.D., Ozturk, H. and Buyukbayram, H. (2008). Resveratrol attenuates oxidative stress and histological alterations induced by liver ischemia/reperfusion in rats. World Journal of Gastroenterology, 14(46): 7101-7106.
Hassan-Khabbar, S., Cottart, C.H., Wendum, D., Vibert, F., Clot, J.P., Savouret, J.F., et al. (2008). Postischemic treatment by trans-resveratrol in rat liver ischemia-reperfusion: a possible strategy in liver surgery. Liver Transplantation, 14:451-459.
He, X.S., Ma, Y., Wu, L.W., Wu, J.L., Hu, R.D., Chen, G.H., et al. (2005). Dynamical changing patterns of glycogen and enzyme histochemical activities in rat liver graft undergoing warm ischemia injury. World Journal of Gastroenterology, 11: 2662-2665.
Hosseinzadeh, H., Modaghegh, M.H. and Saffari, Z. (2009). Crocus Sativus L. (Saffron) Extract and its Active Constituents (Crocin and Safranal) on Ischemia-Reperfusion in Rat Skeletal Muscle. Evidence- Based Complementary and Alternative Medicine, 6(3): 343-350.
Hosseinzadeh, H., Sadeghnia, H.R., Ziaee, T. and Danaee, A. (2005). Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. International Journal of Pharmacy and Pharmaceutical sciences, 8(3): 387-393.
Lee, G. and Luna, H.T. (1988). Manual of histologic staining methods of the armed forces institute of pathology. 3rd ed., The Blakiston Division Mc Graw. Hill Book Company, pp: 32-107.
Magesh, V., Singh, J.P., Selvendiran, K., Ekambaram, G. and Sakthisekaran, D. (2006). Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Molecular and Cellular Biochemistry, 287(1-2): 127-135.
Martinek, R.G. (1972). A rapid ultraviolet spectrophotometric lactic dehydrogenase assay. Clinica Chimica Acta,40(1): 91-99.
Mohandas, J., Marshal, J.J., Duggin, G.G., Horvath, J.S. and Tiller, D.G. (1984). Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Research, 44(11): 5086-5091.
Montalvo-Jave, E.E., Escalante-Tattersfield, T., Ortega-Salgado, J.A., Pina, E. and Geller, D.A. (2008). Factors in the pathophysiology of the liver ischemia-reperfusion injury. Journal of Surgical Research, 147: 153-159.
Naik, S.R. and Panda, V.S. (2008). Hepatoprotective effect of Ginkgoselect Phytosome® in rifampicin induced liver injurym in rats: Evidence of antioxidant activity. Fitoterapia, 79(6): 439-445.
Nishikimi, M., Appaji, N. and Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2): 849-854.
Polat, K.Y., Aydinli, B., Polat, O., Aydin, U., Yazici, P., Ozturk, G., et al. (2008). The protective effect of aprotinin and alpha-tocopherol on ischemia-reperfusion injury of the rat liver. Transplantation Proceedings, 40: 63-68.
Pulitano, C. and Aldrighetti, L. (2008). The protective role of steroids in ischemia-reperfusion injury of the liver. Current Pharmaceutical Design, 14: 496-503.
Reitman, S. and Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology, 28: 56-63.
Rotruck, I.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra. W.G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179: 588-590.
Sanchez-Moreno, C., Larrauri, J.A. and Saura-Calixto, F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International, 32: 407-412.
Sener, G., Tosun, O., Sehirli, A.O., Kacmaz, A., Arbak, S., Ersoy, Y., et al. (2003). Melatonin and N-acetylcysteine have beneficial effects during hepatic ischemia and reperfusion. Life Science, 72: 2707-2718.
Shen, S.Q., Zhang, Y., Xiang, J.J. and Xiong, C.L. (2007). Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World Journal of Gastroenterology, 13: 1953-1961.
Shin, T., Kuboki, S., Huber, N., Eismann, T., Galloway, E., Schuster, R., et al. (2008). Activation of peroxisome proliferator-activated receptor-gamma during hepatic ischemia is age-dependent. Journal of Surgical Research, 147: 200-205.
Thabrew, M.I., Joice, P.D. and Rajatissa, W. (1987). A comparative study of the efficacy of Pavetta indica and Osbeckia octanda in the treatment of liver dysfunction. Planta Medica, 53(3):239-41.
Tseng, T.H., Chu, C.Y., Huang, J.M., Shiow, S.J. and Wang, C.J. (1995). Crocetin protects against oxidative damage in rat primary hepatocytes. Cancer Letters, 97(1): 61-67.
van Gulik, T.M., de Graaf, W., Dinant, S., Busch, O.R. and Gouma, D.J. (2007). Vascular occlusion techniques during liver resection. Digestive Surgery, 2007, 24: 274-281.
Xiang, M., Qian, Z.Y., Zhou, C.H., Liu, J. and Li, W.N. (2006). Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. Journal of Ethnopharmacololgy, 107(1): 25-31.
Yildiz, F., Coban, S., Terzi, A., Ates, M., Aksoy, N., Cakir, H., et al. (2008).Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World Journal of Gastroenterology, 14(33): 5204-5209.
Yildiz, F., Coban, S., Terzi, A., Ates, M., Aksoy, N., Cakir, H., et al. (2008).Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World Journal of Gastroenterology, 14(33): 5204-5209.
Zheng, Y.Q., Liu, J.X., Wang, J.N. and Xu, L. (2007). Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Research, 1138: 86-94.