ارزیابی تاثیر مقادیر مختلف اسید آمینه ترئونین جیره غذایی بر عملکرد رشد، خصوصیات لاشه، سیستم ایمنی و برخی از فاکتورهای خونی بلدرچین ژاپنی تحت تنش گرمایی
محورهای موضوعی :
آسیب شناسی درمانگاهی دامپزشکی
خیرالله مرادی
1
,
حسین رضا شهبازی
2
*
1 - دانشآموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
2 - استادیار گروه علوم دامی، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
تاریخ دریافت : 1399/07/25
تاریخ پذیرش : 1399/12/23
تاریخ انتشار : 1399/11/01
کلید واژه:
فاکتورهای خونی,
سیستم ایمنی,
خصوصیات لاشه,
بلدرچین ژاپنی,
ترئونین,
عمکرد رشد,
چکیده مقاله :
استفاده از مکمل اسید آمینه ترئونین در جیره بلدرچین سبب افزایش راندمان تولید میگردد. مطالعهحاضربهمنظور مقایسهاثرمقادیر مختلف ترئونین جیره غذاییبر عملکرد رشد، خصوصیات لاشه، سیستم ایمنی و فاکتورهای خونی در بلدرچین ژاپنی تحت تنش گرمایی انجامپذیرفت. بدین منظور از تعداد 300 قطعه جوجه نر یک روزه بلدرچین ژاپنی (Coturnix coturnix japonica) در یک طرح کاملاً تصادفی در قالب 6 تیمار و 5 تکرار که هر تکرار حاوی 10 جوجه بود، استفاده شد. مقادیر مختلفبه کارگرفته شدهاز ترئونین در جیره های غذایی آزمایشی به ترتیب شامل 1) 82/0 درصد، 2) 92/0 درصد، 3) 02/1 درصد، 4) 12/1 درصد، 5) 22/1 درصد و 6) 32/1 درصد، بود. افزایش وزن بدن و ضریب تبدیل خوراک در تیمارهای 5 و 6، بهبود معنیداری پیدا کرد (001/0>p ) و مقادیر 12/1 و 22/1 درصد ترئونین در جیره، اثر معنیداری بر بهبود خصوصیات لاشه داشت (001/0>p ). اما اختلاف آماری معنیداری در وزن اندامهای لنفاوی و تیتر آنتیبادیهای تولیدشده علیه SRBC (sheep red blood cells) وجود نداشت (05/0<p ). همچنین مقادیر مختلف ترئونین جیره اثر معنیداری بر افزایش غلظت اسید اوریک،HDL(high-density lipoprotein)و LDL (low-density lipoprotein) سرم خون بلدرچینها داشت (05/0>p ). غلظت آنزیمهای کبدی هیچ کدام از تیمارها اختلاف آماری معنیداری باهم نداشتند(05/0<p ).در مطالعه حاضر مشخص گردید کهافزایش مقدار اسید آمینه ترئونین در جیره بلدرچینها تا سطح 22/1 درصد، میتواند بر عملکرد و بهبود خصوصیات لاشه در شرایط تنش گرمایی اثرات مفیدی داشته باشد.
چکیده انگلیسی:
The present experiment was performed to compare the effect of different levels of dietary threonine on performance, carcass characteristics and immune system and blood factors in Japanese quailunder heat stress. For the experiment, 300 one-day-old Japanese quail chicks (Coturnix coturnix japonica) were used in a completely randomized design with six levels of threonine in 6 treatments and 5 replications, each replication containing 10 chicks. The percentages of threonine in the diet of the experimental treatments were: 1) 0.82 %, 2) 0.92 %, 3) 1.02 %, 4) 1.12 %, 5) 1.22 % and 6) 1.32 %. The results showed that the increase in body weight and feed conversion ratio improved significantly in treatments 5 and 6 (p < 0.001). Levels of 1.12 and 1.22% of threonine in the diet had a significant effect on carcass percentage (p < 0.001). There was no significant difference in the weight of lymphatic organs and the titer of antibodies produced against SRBC (sheep red blood cells) in the treatments (p>0.05). Dietary threonine levels had a significant effect on serum uric acid, HDL (high-density lipoprotein) and LDL (low-density lipoprotein) concentrations (p < 0.05). Liver enzyme levels were not significantly different in any of the treatments (p < 0.05). The results showed that increasing threonine in quail diet up to 1.22% can have beneficial effects on performance and improvement of carcass characteristics under heat stress conditions.
منابع و مأخذ:
Acar, N., Barbato, G.F. and Patterson, P.H. (2001). The effect of feeding excess methionine on live performance carcass traits, and Ascitic mortality. Poultry Science, 80(11): 1585-1989.
Ahmadi, M., Ahmadian, A., Poorghasemi, M., Makovicky, P. and Seidavi, A. (2018). Nano-selenium affects on duodenum, jejunum, ileum and coloncharacteristics in chicks: An animal model. International Journal of Nano Dimension, 10(2): 225-229.
Ahmadi, M., Poorghasemi, M., Seidavi, A., Hatzigiannakis, E. and Milis, C. (2019). An optimum level of nano-selenium supplementation of a broiler diet according to the performance, economical parameters, plasma constituents and immunity. Journal of Elementology, 25(3): 1178-1198.
Baylan, M., Canogullari, S., Ayasan, T. and Sahin, A. (2006). Dietary threonine supplementation for improving growth performance and edible carcass parts in Japanese quails, Coturnix coturnix Japonica. International Journal of Poultry Science, 5(7): 635-638.
Barkley, G.R. and Wallis, I.R. (2001). Threonine requirements of broiler chickens: why do published values differ? British Poultry Science, 42(5): 610-615.
Blake, J.P. and Hess, J.B. (2013). Changes in protein level for bobwhite quail. Journal of Applied Poultry Research, 22(3): 511-515.
Chen, Y.P., Cheng, Y.F., Li, X.H., Yang, W.L., Wen C., Zhuang, S., et al. (2017). Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poultry Science, 96(2): 405-413.
Corzo, A., Kidd, M.T., Dozier III, W.A., Pharr, G.T. and Koutsos, E.A. (2007). Dietary threonine needs for growth and immunity of broilers raised under different litter conditions. The Journal of Applied Poultry Research, 16(4): 574-581.
De Basilio, V., Vilarino, M., Yahav, S. and Picard, M. (2001). Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poultry Science, 80(1): 29-36.
Dozier, W.A., Moran, E.T. and Kidd, M.T. (2000). Threonine requirement of broiler males from 42 to 56 days in a summer environment. The Journal of Applied Poultry Research, 9(4): 496-500.
Fatemi, M. and Toghyani, M. (2018). Effect of tryptophan supplementation in protein deficient diets on performance, gut development and immune responses in broiler chickens. Iranian Journal of Applied Animal Science, 8(1): 101-108.
Feizi, A., Dadian, F. and Asadzadehmajdi, S. (2011). The effect of heat stress on some blood parameters, biochemical values and humoral immunity in broiler chickens. Journal of Veterinary Clinical Pathology, 6(3): 1621-1627. [In Persian]
Fernanda Peralta, M.F., Nilson, A.J. and Miazzo, R.D. (2018). Effect of Saccharomyces cerevisiae association with threonine on productive performance in broilers. Iranian Journal of Applied Animal Science, 8(4): 677-684.
Furlan, R.L., Faria Filho, D.E., Rosa, P.S. and Macari, M. (2004). Does low-protein diet improve broiler performance under heat stress conditions? Brazilian Journal of Poultry Science, 9(3): 81-86.
Khalkhali, A., Hamedi, S. and Paryani, M. (2019). Effect of methionine deficiency on small intestinal histology in Japanese quail. Veterinary Clinical Pathology, 13(4): 341-352. [In Persian]
Khan, A., Nawaz, H. and Zahoor, I. (2006). Effect of different levels of digestible Threonine on growth performance of broiler chicks. Journal Animal Poultry Science, 16(12): 1-2.
Khatibi Shahri, A., Danesh Mesgaran, M. and Zahmatkesh, D. (2018). Rumen fermentation responses to dairy diets differing in protein degradation potential and processed barley grain. Iranian Journal of Applied Animal Science, 8(4): 575-582.
Konashi, S., Takahashi, K. and Akiba, Y. (2000). Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. British Journal of Nutrition, 83(04): 449-456.
Mao, X., Zeng, X., Qiao, S., Wu, G. and Li, D. (2011). Specific roles of threonine in intestinal mucosal integrity and barrier function. Frontiers in Bioscience, 3(4): 1192-1200.
Moghaddam, H.S., Moghaddam, H.N., Kermanshahi, H., Mosavi, A.H. and Raji, A. (2011). The effect of threonine on mucin2 gene expression, intestinal histology and performance of broiler chicken. Italian Journal of Animal Science, 10(2): 66-71.
Nalini, K., Kumar, K.A. and Gahlot, A.K. (2008). Ambient temperature associated variations in serum hormones and interrelated analytes of broiler chickens in arid tract. Slovenian Veterinary Research, 45(4): 127-34.
National Research Council (1994). Nutrient Requirements of Poultry, 9th ed., USA: National Academy Press, Washington. D.C., pp: 96-155.
Nikpiran, N., Manafi, H. and Vahdatpour, T. (2018). The effects of active and inactivate Saccharomyces cerevisiae and their combination on performance, antioxidant. Journal of Veterinary Clinical Pathology, 12(47): 193-203. [In Persian]
Ojano-Dirain, C.P. and Waldroup P.W. (2010). Protein and amino acid needs of broilers in warm weather: A Review. International Journal of Poultry Science, 1(4): 40-46.
Poorghasemi, M., Chamani, M., Mirhosseini, S.Z., Sadeghi, A.A. and Seidavi, A. (2017). Effect of probiotic and different sources of fat on performance, carcass characteristics, intestinal morphology and ghrelin gene expression on broiler chickens. Kafkas Universitesi Veteriner Fakultesi Dergisi, 24(2): 169-178.
Poorghasemi, M., Seidavi, A.R., Qotbi, A.A.A., Chambers, J.R., Laudadio, V. and Tufarelli, V. (2015). Effect of dietary fat source on humoral immunity response of broiler chickens. European Poultry Science, 79(3): 1-8.
Poorghasemi, M., Seidavi, A.R. and Qotbi, A.A.A. (2013). Investigation on fat source effects on broiler chickens performance. Research Journal of Biotechnology, 8(1): 78-82.
Ratriyanto, A. and Indreswari, R.S. (2014). Effects of protein levels and supplementation of methyl group donor on nutrient digestibility and performance of broiler chickens in the tropics. International Journal of Poultry Science, 13(10): 575-581.
Rezaeipour, V., Fononi, H. and Irani, M. (2012). Effects of dietary L-threonine and Saccharomyces cerevisiae on performance, intestinal morphology and immune response of broiler chickens. South African Journal of Animal Science, 42(3): 266-273.
Samadi, M.S., Chashnidel, Y., Dirandeh, E. and Deldar, H. (2018). Effects of heat processing of soybeans and linseed on ruminal fatty acid biohydrogenation in situ. Iranian Journal of Applied Animal Science, 8(4): 583-589.
Tanure, C., Santoss, J., Oliveira, E., Laboissiere, M., Racanicci, A., Mc Manus, C., et al. (2015). Digestible threonine levels in the starter diet of broilers derived from breeders of different ages. Brazilian Journal of Poultry Science, 17(3): 31-38.
Tenenhouse, H.S. and Deutsch, H.F. (1966). Some physical-chemical properties of chicken gamma-globulins and their pepsin and papain digestion product. Immunochemistry, 3(1): 11-20.
Wajid, A., Ahrar, K., Anjum, A.D. and Zia-ur-rehman, Z. (2002). Effects of induced heat stress on some biochemical values in broiler chicks. International Journal of Agriculture and Biology, 1560(85): 74-75.
Zaefarian, F., Zaghari, M. and Shivazad, M. (2008). The threonine requirements and its effects on growth performance and gut morphology of broiler chicken fed different levels of protein. Journal of Poultry Science, 7(12): 1207-1215.
_||_
Acar, N., Barbato, G.F. and Patterson, P.H. (2001). The effect of feeding excess methionine on live performance carcass traits, and Ascitic mortality. Poultry Science, 80(11): 1585-1989.
Ahmadi, M., Ahmadian, A., Poorghasemi, M., Makovicky, P. and Seidavi, A. (2018). Nano-selenium affects on duodenum, jejunum, ileum and coloncharacteristics in chicks: An animal model. International Journal of Nano Dimension, 10(2): 225-229.
Ahmadi, M., Poorghasemi, M., Seidavi, A., Hatzigiannakis, E. and Milis, C. (2019). An optimum level of nano-selenium supplementation of a broiler diet according to the performance, economical parameters, plasma constituents and immunity. Journal of Elementology, 25(3): 1178-1198.
Baylan, M., Canogullari, S., Ayasan, T. and Sahin, A. (2006). Dietary threonine supplementation for improving growth performance and edible carcass parts in Japanese quails, Coturnix coturnix Japonica. International Journal of Poultry Science, 5(7): 635-638.
Barkley, G.R. and Wallis, I.R. (2001). Threonine requirements of broiler chickens: why do published values differ? British Poultry Science, 42(5): 610-615.
Blake, J.P. and Hess, J.B. (2013). Changes in protein level for bobwhite quail. Journal of Applied Poultry Research, 22(3): 511-515.
Chen, Y.P., Cheng, Y.F., Li, X.H., Yang, W.L., Wen C., Zhuang, S., et al. (2017). Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poultry Science, 96(2): 405-413.
Corzo, A., Kidd, M.T., Dozier III, W.A., Pharr, G.T. and Koutsos, E.A. (2007). Dietary threonine needs for growth and immunity of broilers raised under different litter conditions. The Journal of Applied Poultry Research, 16(4): 574-581.
De Basilio, V., Vilarino, M., Yahav, S. and Picard, M. (2001). Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poultry Science, 80(1): 29-36.
Dozier, W.A., Moran, E.T. and Kidd, M.T. (2000). Threonine requirement of broiler males from 42 to 56 days in a summer environment. The Journal of Applied Poultry Research, 9(4): 496-500.
Fatemi, M. and Toghyani, M. (2018). Effect of tryptophan supplementation in protein deficient diets on performance, gut development and immune responses in broiler chickens. Iranian Journal of Applied Animal Science, 8(1): 101-108.
Feizi, A., Dadian, F. and Asadzadehmajdi, S. (2011). The effect of heat stress on some blood parameters, biochemical values and humoral immunity in broiler chickens. Journal of Veterinary Clinical Pathology, 6(3): 1621-1627. [In Persian]
Fernanda Peralta, M.F., Nilson, A.J. and Miazzo, R.D. (2018). Effect of Saccharomyces cerevisiae association with threonine on productive performance in broilers. Iranian Journal of Applied Animal Science, 8(4): 677-684.
Furlan, R.L., Faria Filho, D.E., Rosa, P.S. and Macari, M. (2004). Does low-protein diet improve broiler performance under heat stress conditions? Brazilian Journal of Poultry Science, 9(3): 81-86.
Khalkhali, A., Hamedi, S. and Paryani, M. (2019). Effect of methionine deficiency on small intestinal histology in Japanese quail. Veterinary Clinical Pathology, 13(4): 341-352. [In Persian]
Khan, A., Nawaz, H. and Zahoor, I. (2006). Effect of different levels of digestible Threonine on growth performance of broiler chicks. Journal Animal Poultry Science, 16(12): 1-2.
Khatibi Shahri, A., Danesh Mesgaran, M. and Zahmatkesh, D. (2018). Rumen fermentation responses to dairy diets differing in protein degradation potential and processed barley grain. Iranian Journal of Applied Animal Science, 8(4): 575-582.
Konashi, S., Takahashi, K. and Akiba, Y. (2000). Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. British Journal of Nutrition, 83(04): 449-456.
Mao, X., Zeng, X., Qiao, S., Wu, G. and Li, D. (2011). Specific roles of threonine in intestinal mucosal integrity and barrier function. Frontiers in Bioscience, 3(4): 1192-1200.
Moghaddam, H.S., Moghaddam, H.N., Kermanshahi, H., Mosavi, A.H. and Raji, A. (2011). The effect of threonine on mucin2 gene expression, intestinal histology and performance of broiler chicken. Italian Journal of Animal Science, 10(2): 66-71.
Nalini, K., Kumar, K.A. and Gahlot, A.K. (2008). Ambient temperature associated variations in serum hormones and interrelated analytes of broiler chickens in arid tract. Slovenian Veterinary Research, 45(4): 127-34.
National Research Council (1994). Nutrient Requirements of Poultry, 9th ed., USA: National Academy Press, Washington. D.C., pp: 96-155.
Nikpiran, N., Manafi, H. and Vahdatpour, T. (2018). The effects of active and inactivate Saccharomyces cerevisiae and their combination on performance, antioxidant. Journal of Veterinary Clinical Pathology, 12(47): 193-203. [In Persian]
Ojano-Dirain, C.P. and Waldroup P.W. (2010). Protein and amino acid needs of broilers in warm weather: A Review. International Journal of Poultry Science, 1(4): 40-46.
Poorghasemi, M., Chamani, M., Mirhosseini, S.Z., Sadeghi, A.A. and Seidavi, A. (2017). Effect of probiotic and different sources of fat on performance, carcass characteristics, intestinal morphology and ghrelin gene expression on broiler chickens. Kafkas Universitesi Veteriner Fakultesi Dergisi, 24(2): 169-178.
Poorghasemi, M., Seidavi, A.R., Qotbi, A.A.A., Chambers, J.R., Laudadio, V. and Tufarelli, V. (2015). Effect of dietary fat source on humoral immunity response of broiler chickens. European Poultry Science, 79(3): 1-8.
Poorghasemi, M., Seidavi, A.R. and Qotbi, A.A.A. (2013). Investigation on fat source effects on broiler chickens performance. Research Journal of Biotechnology, 8(1): 78-82.
Ratriyanto, A. and Indreswari, R.S. (2014). Effects of protein levels and supplementation of methyl group donor on nutrient digestibility and performance of broiler chickens in the tropics. International Journal of Poultry Science, 13(10): 575-581.
Rezaeipour, V., Fononi, H. and Irani, M. (2012). Effects of dietary L-threonine and Saccharomyces cerevisiae on performance, intestinal morphology and immune response of broiler chickens. South African Journal of Animal Science, 42(3): 266-273.
Samadi, M.S., Chashnidel, Y., Dirandeh, E. and Deldar, H. (2018). Effects of heat processing of soybeans and linseed on ruminal fatty acid biohydrogenation in situ. Iranian Journal of Applied Animal Science, 8(4): 583-589.
Tanure, C., Santoss, J., Oliveira, E., Laboissiere, M., Racanicci, A., Mc Manus, C., et al. (2015). Digestible threonine levels in the starter diet of broilers derived from breeders of different ages. Brazilian Journal of Poultry Science, 17(3): 31-38.
Tenenhouse, H.S. and Deutsch, H.F. (1966). Some physical-chemical properties of chicken gamma-globulins and their pepsin and papain digestion product. Immunochemistry, 3(1): 11-20.
Wajid, A., Ahrar, K., Anjum, A.D. and Zia-ur-rehman, Z. (2002). Effects of induced heat stress on some biochemical values in broiler chicks. International Journal of Agriculture and Biology, 1560(85): 74-75.
Zaefarian, F., Zaghari, M. and Shivazad, M. (2008). The threonine requirements and its effects on growth performance and gut morphology of broiler chicken fed different levels of protein. Journal of Poultry Science, 7(12): 1207-1215.