چکیده مقاله :
عفونت با باکتری های جنس سالمونلا موجب بیماری های مزمن و حاد در طیور می گردد که می توانند باعث ایجاد خسارت اقتصادی قابل توجهی به صنعت طیور شوند. هدف از مطالعه حاضر بررسی میزان مقاومت آنتی بیوتیکی در سالمونلاهای آلودهکننده گله های مرغ تخم گذار در سطح استان آذربایجان شرقی و نیز بررسی حضور ژن حدت spvR در جدایه های مذکور بود. بدین منظور از تعداد 45 گله مشکوک به سالمونلا در مجموع تعداد 200 نمونه کبد و تخمدان اخذشده و در محیط های انتخابی و افتراقی سالمونلا کشت داده شد. پس از جداسازی باکتری سالمونلا از نمونه های مذکور، آزمایش آنتی بیوگرام بر اساس روش انتشار دیسک در آگار جهت تعیین میزان حساسیت آنتی بیوتیکی جدایه ها انجام شد. جهت بررسی حضور ژن حدت spvR در سالمونلاهای جدا شده نیز از آزمایش مولکولی واکنش زنجیره ای پلی مراز و پرایمر های اختصاصی مربوطه استفاده شد. نتایج مطالعه حاضر نشان داد که تمامی جدایه های مورد آزمایش نسبت به آنتی بیوتیک های اریترومایسین، سولتریم و تتراسایکلین مقاوم بودند. بیشترین میزان مقاومت آنتی بیوتیکی هم به ترتیب در برابر داکسی سایکلین (3/94 درصد)، دانوفلوکساسین (6/92 درصد) و فلورفنیکل (7/91 درصد) مشاهده شد. همچنین بیشترین میزان حساسیت نیز مربوط به آنتی بیوتیک های فوزباک (7/94 درصد) و انروفلوکساسین (2/74 درصد) بود. نتایج آزمایش مولکولی نیز نشان داد که ژن spvR در غالب گله های طیورتخم گذار استان آذربایجان شرقی وجود دارد (در 46/88 درصد جدایه های سالمونلا). با توجه به نتایج حاصله، لزوم پیشگیری از اشاعه سالمونلاهای آلوده کننده طیور تخم گذار در راستای بهبود صنعت پرورش طیور و نیز سلامت جوامع انسانی ضروری به نظر میرسد.
چکیده انگلیسی:
Infection with salmonella bacteria causes chronic and acute diseases in poultry that can cause significant economic losses to the poultry industry. SThe aim of the current study was to evaluate antibiotic resistance in salmonella infected layer flocks of East Azarbaijan province and to determine the presence of spvR virulence gene in isolated samples. A total of 200 liver and ovary samples were taken from 45 salmonella suspected flocks and cultured in selective and differential growth medium of salmonella. Antibiogram test to determine antibiotic sensitivity was done following isolation of bacteria. PCR was used to determine the presence of spvR gene with specific primers. The results indicated all isolates were resistant to Erythromycin, Tetracycline, and Trimethoprim-Sulphamethoxazole, and the highest antibiotic resistance was against Doxycycline 94.3%, Danofloxacin 92.6% and Florfenicol 91.7%. Also, the highest sensitivity was against Fosfomycin 94.7%, and Enrofloxacin 74.2%. Results of molecular tests indicated that the spvR gene was present in the majority of layer flocks of East Azarbaijan province (in 88.46% of isolated salmonella). According to the results, it is necessary to prevent the spread of salmonella contamination amongst the laying hens in order to improve the poultry industry and the health of human communities.
منابع و مأخذ:
Amini, K., Salehi, T.Z., Nikbakht, G., Ranjbar, R., Amini, J. and Ashrafganjooei, S.B. (2010).
Molecular detection of invA and spv virulence genes in Salmonella enteritidis isolated from human and animals in Iran. African Journal of Microbiology Research, 4(21): 2202-2210.
• Amirmozaffari, N., Rahmani, Z. and Iesazadeh, K. (2013). Evaluation of the level of contamination with Salmonella spp. in Red Meat, Chicken, and Domestic and Industrial Eggs produced in Talesh city and assessment of their antibiotic resistance pattern, Iran. Journal of Qom University Medical Sciences, 7(5): 60-65.
• Barrow, P. and Lovell, M. (1988). The association between a large molecular mass plasmid and virulence in a strain of Salmonella pullorum. Microbiology, 134(8): 2307-2316.
• Barrow, P.A., Simpson, J.M., Lovell, M.A. and Binns, M.M. (1987). Contribution of Salmonella gallinarum large plasmid toward virulence in Fowl Typhoid. Infection and Immunity, 55(2): 388-392.
• Bygrave, A. and Gallagher, J. (1989). Transmission of Salmonella enteritidis in Poultry. Veterinary Record, 124(21): 571-571.
• Carraminana, J.J., Rota, C., Agustin, I. and Herrera, A. (2004). High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a Poultry Slaughterhouse in Spain. Veterinary Microbiology, 104(1): 133-139.
• Ching-Lee, M.R., Katz, A.R., Sasaki, D.M. and Minette, H.P. (1991). Salmonella egg survey in Hawaii: Evidence for routine bacterial surveillance. American Journal of Public Health, 81(6): 764-766.
· Christensen, J., Olsen, J., Hansen, H. and Bisgaard, M. (1992). Characterization of Salmonella enterica serovar gallinarum biovars gallinarum and pullorum by plasmid profiling and biochemical analysis. Avian Pathology, 21(3): 461-470.
· Daruoshi, M., Doosti, A. and Kargar, M. (2015). The prevalence of plasmid genes; spvB, spvC and spvR in Salmonella enteritidis isolated from Poultry Industry in Chaharmahal va Bakhtiari province. Journal of Microbialogy World, 7(4): 282-288.
· Derakhshandeh, A., Firouzi, R. and Khoshbakht, R. (2013). Association of three plasmid-encoded spv genes among different Salmonella serotypes isolated from different origins. Indian Journal of Microbiology, 53(1): 106-110.
· Ezatpanah, E., Moradi Bidhendi, S., Khaki, P., Ghaderi, R., Seyedan Jasbi, E. and Moghtadaee Far, S. (2013). Isolation, serotyping and antibiotic-resistance pattern of isolated Salmonella from Chicken of Arak. Iranian Veterinary Journal, 9(2): 88-96.
· Geimba, M.P., Tondo, E.C., De Oliveira, F.A., Canal, C.W. and Brandelli, A. (2004). Serological characterization and prevalence of spvR genes in Salmonella isolated from foods involved in outbreaks in Brazil. Journal of Food Protection, 67(6): 1229-1233.
· Graziani, C., Busani, L., Dionisi, A., Lucarelli, C., Owczarek, S., Ricci, A., et al. (2008). Antimicrobial resistance in Salmonella enterica serovar typhimurium from human and animal sources in Italy. Veterinary Microbiology, 128(3): 414-418.
· Gulig, P.A. and Doyle, T.J. (1993). The Salmonella typhimurium virulence plasmid increases the growth rate of Salmonellae in Mice. Infection and Immunity, 61(2): 504-511.
· Hoop, R. and Pospischil, A. (1993). Bacteriological, Serological, Histological and Immunohistochemical findings in laying hens with naturally acquired Salmonella enteritidis phage type 4 infection. The Veterinary Record, 133(16): 391-393.
· Humphrey, T. (2000). Public-Health aspects of Salmonella infection. Salmonella in domestic animals, 1(1): 245-263.
· Lister, S.A. (1988). Salmonella enteritidis infection in broilers and broiler breeders. Veterinary Record, 123(13): 350-350.
· Madsen, M. (2011). Risk-based control of Salmonella in broiler production. World Poultry, 27(7): 40-41.
· Mdegela, R.H., Yongolo, M.G., Minga, U.M. and Olsen, J.E. (2000). Molecular epidemiology of Salmonella gallinarum in chickens in Tanzania. Avian Pathology, 29(5): 457-463.
· Myint, M., Johnson, Y., Tablante, N. and Heckert, R. (2006). The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiology, 23(6): 599-604.
· Nikbakht, G.R. and Tajbakhsh, H. (2004). Study of Salmonella plasmid virulence genes (spv) in Salmonella enterica serovars isolated in Iran. Journal of Veterinary Research, 59(2): 137-140.
· Organization, W.H. (2001). Who surveillance programme for control of foodborne infections and intoxications in Europe: Report. Federal Institute for Health Protection of Consumers and Veterinary Medicine, pp: 121-135.
· Roberts, T., Tompkin, R. and Baird-Parker, A. (1996). Microorganisms in foods, microbiological specifications of food pathogens. Chapman & Hall, pp: 615-649.
· Rychlik, I., Lovell, M. and Barrow, P. (1998). The presence of genes homologous to the K88 genes Faeh and Faei on the virulence plasmid of Salmonella gallinarum. FEMS Microbiology Letters, 159(2): 255-260.
· Sabegi, M. and Anzabi, Y. (2019). Determine of serum group and antibiotic resistance pattern of isolated Salmonella from laying industrial poultry in Tabriz area. Journal of Veterinary Clinical Pathology, 2(50): 199-211. [In Persian]
· Shapouri, R., Rahnema, M. and Eghbalzadeh, S. (2009). Prevalence of Salmonella serotypes in poultry meat and egg and determine their antibiotic sensivity in Zanjan city. The Quarterly Journal of Animal Physiology and Development, 2(6): 63-71.
· Swayne, D.E., Mcdougald, L., Nolan, L.K., Suarez, D.L. and Nair, V. (2013). Diseases of Poultry. 13th ed., Iowa, USA: John Wiley & Sons, Inc, pp: 251-256.
_||_Amini, K., Salehi, T.Z., Nikbakht, G., Ranjbar, R., Amini, J. and Ashrafganjooei, S.B. (2010).
Molecular detection of invA and spv virulence genes in Salmonella enteritidis isolated from human and animals in Iran. African Journal of Microbiology Research, 4(21): 2202-2210.
• Amirmozaffari, N., Rahmani, Z. and Iesazadeh, K. (2013). Evaluation of the level of contamination with Salmonella spp. in Red Meat, Chicken, and Domestic and Industrial Eggs produced in Talesh city and assessment of their antibiotic resistance pattern, Iran. Journal of Qom University Medical Sciences, 7(5): 60-65.
• Barrow, P. and Lovell, M. (1988). The association between a large molecular mass plasmid and virulence in a strain of Salmonella pullorum. Microbiology, 134(8): 2307-2316.
• Barrow, P.A., Simpson, J.M., Lovell, M.A. and Binns, M.M. (1987). Contribution of Salmonella gallinarum large plasmid toward virulence in Fowl Typhoid. Infection and Immunity, 55(2): 388-392.
• Bygrave, A. and Gallagher, J. (1989). Transmission of Salmonella enteritidis in Poultry. Veterinary Record, 124(21): 571-571.
• Carraminana, J.J., Rota, C., Agustin, I. and Herrera, A. (2004). High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a Poultry Slaughterhouse in Spain. Veterinary Microbiology, 104(1): 133-139.
• Ching-Lee, M.R., Katz, A.R., Sasaki, D.M. and Minette, H.P. (1991). Salmonella egg survey in Hawaii: Evidence for routine bacterial surveillance. American Journal of Public Health, 81(6): 764-766.
· Christensen, J., Olsen, J., Hansen, H. and Bisgaard, M. (1992). Characterization of Salmonella enterica serovar gallinarum biovars gallinarum and pullorum by plasmid profiling and biochemical analysis. Avian Pathology, 21(3): 461-470.
· Daruoshi, M., Doosti, A. and Kargar, M. (2015). The prevalence of plasmid genes; spvB, spvC and spvR in Salmonella enteritidis isolated from Poultry Industry in Chaharmahal va Bakhtiari province. Journal of Microbialogy World, 7(4): 282-288.
· Derakhshandeh, A., Firouzi, R. and Khoshbakht, R. (2013). Association of three plasmid-encoded spv genes among different Salmonella serotypes isolated from different origins. Indian Journal of Microbiology, 53(1): 106-110.
· Ezatpanah, E., Moradi Bidhendi, S., Khaki, P., Ghaderi, R., Seyedan Jasbi, E. and Moghtadaee Far, S. (2013). Isolation, serotyping and antibiotic-resistance pattern of isolated Salmonella from Chicken of Arak. Iranian Veterinary Journal, 9(2): 88-96.
· Geimba, M.P., Tondo, E.C., De Oliveira, F.A., Canal, C.W. and Brandelli, A. (2004). Serological characterization and prevalence of spvR genes in Salmonella isolated from foods involved in outbreaks in Brazil. Journal of Food Protection, 67(6): 1229-1233.
· Graziani, C., Busani, L., Dionisi, A., Lucarelli, C., Owczarek, S., Ricci, A., et al. (2008). Antimicrobial resistance in Salmonella enterica serovar typhimurium from human and animal sources in Italy. Veterinary Microbiology, 128(3): 414-418.
· Gulig, P.A. and Doyle, T.J. (1993). The Salmonella typhimurium virulence plasmid increases the growth rate of Salmonellae in Mice. Infection and Immunity, 61(2): 504-511.
· Hoop, R. and Pospischil, A. (1993). Bacteriological, Serological, Histological and Immunohistochemical findings in laying hens with naturally acquired Salmonella enteritidis phage type 4 infection. The Veterinary Record, 133(16): 391-393.
· Humphrey, T. (2000). Public-Health aspects of Salmonella infection. Salmonella in domestic animals, 1(1): 245-263.
· Lister, S.A. (1988). Salmonella enteritidis infection in broilers and broiler breeders. Veterinary Record, 123(13): 350-350.
· Madsen, M. (2011). Risk-based control of Salmonella in broiler production. World Poultry, 27(7): 40-41.
· Mdegela, R.H., Yongolo, M.G., Minga, U.M. and Olsen, J.E. (2000). Molecular epidemiology of Salmonella gallinarum in chickens in Tanzania. Avian Pathology, 29(5): 457-463.
· Myint, M., Johnson, Y., Tablante, N. and Heckert, R. (2006). The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiology, 23(6): 599-604.
· Nikbakht, G.R. and Tajbakhsh, H. (2004). Study of Salmonella plasmid virulence genes (spv) in Salmonella enterica serovars isolated in Iran. Journal of Veterinary Research, 59(2): 137-140.
· Organization, W.H. (2001). Who surveillance programme for control of foodborne infections and intoxications in Europe: Report. Federal Institute for Health Protection of Consumers and Veterinary Medicine, pp: 121-135.
· Roberts, T., Tompkin, R. and Baird-Parker, A. (1996). Microorganisms in foods, microbiological specifications of food pathogens. Chapman & Hall, pp: 615-649.
· Rychlik, I., Lovell, M. and Barrow, P. (1998). The presence of genes homologous to the K88 genes Faeh and Faei on the virulence plasmid of Salmonella gallinarum. FEMS Microbiology Letters, 159(2): 255-260.
· Sabegi, M. and Anzabi, Y. (2019). Determine of serum group and antibiotic resistance pattern of isolated Salmonella from laying industrial poultry in Tabriz area. Journal of Veterinary Clinical Pathology, 2(50): 199-211. [In Persian]
· Shapouri, R., Rahnema, M. and Eghbalzadeh, S. (2009). Prevalence of Salmonella serotypes in poultry meat and egg and determine their antibiotic sensivity in Zanjan city. The Quarterly Journal of Animal Physiology and Development, 2(6): 63-71.
· Swayne, D.E., Mcdougald, L., Nolan, L.K., Suarez, D.L. and Nair, V. (2013). Diseases of Poultry. 13th ed., Iowa, USA: John Wiley & Sons, Inc, pp: 251-256.