نقش شاخصههای ژنتیکی در تعیین نژاد اسبهای عرب
محورهای موضوعی :
آسیب شناسی درمانگاهی دامپزشکی
سروین جباری
1
,
محمدرضا مشایخی
2
*
,
علی حسن پور
3
1 - دانشآموخته کارشناسی ارشد ژنتیک، دانشکده علوم پایه، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
2 - استادیار گروه ژنتیک، دانشکده علوم پایه، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
3 - دانشیار گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
تاریخ دریافت : 1397/08/22
تاریخ پذیرش : 1398/03/22
تاریخ انتشار : 1398/05/01
کلید واژه:
تنوع ژنتیکی,
اسب عرب,
ریزماهواره,
توالی تکراری کوتاه,
چکیده مقاله :
با توجه به این که صنعت پرورش اسب به عنوان چهارمین صنعت از لحاظ درآمدزایی در جهان مطرح است و نیز با عنایت به تنوع گونههای اسبهای اصیلدر جهان و ضرورت تعیین خلوص و نسب نزد صاحبان و پرورشدهندگان اسب، اهمیت تحقیقات آزمایشگاهی در این مورد مشخص می گردد. با توجه به تحقیقات گذشته در داخل و خارج کشور که به صورت موردی انجام شده، خلأ موجود در بررسی اسب های ایران از لحاظ تنوع مارکرهای ژنتیکی مثل توالی تکراری کوتاه (short tandem repeats; STR) ضرورت پیدا میکند. دراینمطالعه، تنوعژنتیکی50رأس اسبنژادعربمورد بررسیقرار گرفت.برایاینمنظورازنشانگرهایریزماهوارهپیشنهادی ISAG(International Society for Animal Genetics) استفادهشد.ایننشانگرهاشاملریزماهوارههایVHL20، HTG4، HMS7 و AHT4میباشند.برای این منظور DNA ژنومی از نمونه خونی اسب ها توسط روش مایلر استخراج گردید و به وسیله واکنش زنجیرهای پلیمراز چندگانه توسط پرایمر فلورسنت تکثیر شد. دادهها نشان دادکهتنوعژنتیکیبالاییدرجمعیتاسب هایعربوجوددارد.تعدادآللهایمشاهده شدهبرایهرجایگاهاز6تا9آلل متغیربودومارکرهای AHT4 و VHL20با9آللدارایبیشترینتعدادآللو همچنین HTG4بیشترین مقدار هتروزیگوسیتی را دارا بود. همچنینجایگاه HMS7دارای7آللبودکهکمترینتعدادآللدرمیانجایگاههایبررسی شدهراداشتوجایگاه VHL20دارایپایینترینمقدار هتروزیگوسیتی بود.نتایجحاصلهازمطالعه حاضرنشان دهندهفراوانیبالایتنوعژنتیکیجمعیتاسبهای عرببود.
چکیده انگلیسی:
Considering that the horse breeding industry is the fourth largest source of income generation in the world, and due to the diversity of species of horses in the world and the necessity of purity determination amongst breeders and horse owners, the importance of laboratory research in this regard is justified. According to past research, carried out sporadically in the country and abroad, there is a vacuum in the study of Iranian horses in terms of the diversity of genetic markers such as STR. The present study investigated short tandem repeat (STR) and allele frequency of 50 Arab horses using four loci (VHL20, AHT4, HTG4 and HMS7) recommended by the International Society for Animal Genetics (ISAG). For this purpose, genomic DNA was extracted from whole blood using the Miller procedure and amplified by Multiplex PCR with fluorescent primers. The results indicated the presence of high genetic variability among the population of Arab horses. The number of alleles observed for each locus ranged from 6 to 9 with tAHT4 and VHL20 markers having the highest number of alleles with 9 alleles, and HTG4, with the highest heterozygosity. The HMS7 site had the lowest number of alleles among the sites examined with 7 alleles, and the VHL20 site had the lowest heterozygosity. The results of this study indicate a high frequency of genetic variation among the population of Arab horses.
منابع و مأخذ:
Ala-Amjadi, M., Yeganeh, H. and Sadeghi, M. (2017). Study of genetic variation in Iranian Kurdish horse using microsatellite marker. Iranian Journal of Animal Science, 48(3): 335-342. [In Persian]
Banaabadi, H., Mashayekhi, M.R., Hasanpour, A. and Ayubi, M.R. (2017). The study of genetic variability of Arabian and Caspian horses using microsatellite. Journal of Animal Science Researches, 27(3): 175-183. [In Persian]
Binns, M. and Holmes, N. (1995). The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing. British Veterinary Journal, 151(1): 9-15.
Botstein, D. and White, R.L. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3): 314-331.
Bowling, A. (2001). Historical development and application of molecular genetic tests for horse identification and parentage control. Livestock Production Science, 72(1-2): 111-116.
Chowdhary B.P. and Raudsepp, T. (2000). Cytogenetics and physical gene maps. In: The Genetics of The Horse. Bowling A.T. and Ruvinsky A. editors., New York: CABI Publishing, pp:171-242.
Ellegren, H., Johansson, M., Sandberg, K. and Andersson, L. (1992). Cloning of highly polymorphic microsatellites in the horse. Animal Genetics, 23(2): 133-142.
Evans, A.R. and Janis, C.M. (2014). The evolution of high dental complexity in the horse lineage. Annales Zoologici Fennici, BioOne, 51(1): 73-79.
Fornal, A., Radko, A. and Piestrzyńska-Kajtoch, A. (2013). Genetic polymorphism of Hucul horse population based on 17 microsatellite loci. Acta Biochimica Polonica, 60(4): 761-765.
Ghaheri, M., Kahrizi, D., Yari, K., Babaie, A., Suthar, R.S. and Kazemi, E. (2016). A comparative evaluation of four DNA extraction protocols from whole blood sample. Cellular and Molecular Biology, 62(3): 120-124.
Grubb, P. (2005). Order Perissodactyla, Mammals Species of the World, A Taxonomic and Geographic Reference. 3rd ed., The Johns Hopkins University Press, Baltimore, pp: 629-636.
Guekin, G., Bertaud, M. and Amigues, Y. (1994). Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Animal Genetics, 25(1): 62-62.
Kavar, T., Habe, F., Brem, G. and Dovč, P. (1999). Mitochondrial D‐loop sequence variation among the 16 maternal lines of the Lipizzan horse breed. Animal Genetics, 30(6): 423-430.
Kimpton, C., Fisher, D., Watson, S., Adams, M. Urquhart, A., Lygo, J., et al. (1994). Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. International Journal of Legal Medicine, 106(6): 302-311.
Lee, S.Y. and Cho, G.J. (2006). Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing. Journal of Veterinary Science, 7(1): 63-67.
Luís, C., Bastos-Silveira, C., Gus Cothran, E. and Do Mar Oom, M. (2006). Iberian origins of New World horse breeds. Journal of Heredity, 97(2): 107-113.
Melnyk, O.V., Spyrydonov, V.G., Dzitsiuk, V.V. and Osadchyj, S.A. (2013). Molecular-Genetic CHaracterization of Shetland pony using microsatellite loci of DNA. The Animal Biology, 15(4): 73-79.
Micka, K.A., Sprecher, C., Lins, A., Comey, C., Koons, B., Crouse, C., et al. (1996). Validation of multiplex polymorphic STR amplification sets developed for personal identification applications, Journal of Forensic Science, 41(4): 582-590.
Miller, S., Dykes, D. and Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3): 1215-1216.
Seyedabadi, H., Amirinia, C., Banabazi, M.H. and Emrani, H. (2006). Parentage verification of Iranian Caspian horse using microsatellites markers. Iranian Journal of Biotechnology, 4(4): 260-264.
Shelyov, A., Melnyk, O., Suprun, I., Spyrydonov, V., Melnychvk, S., Dzitsiuk, V., et al. (2014). The comparative analysis of the allele pool of Thoroughbred horses in different countries. Iranian Journal of Applied Animal Science, 4(3): 637-641.
Solis, A., Jugo, B., Mériaux, J., Iriondo, M., Mazón, L., Aguirre, A., et al. (2005). Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation. Journal of Heredity, 96(6): 670-678.
Vahdani, M.A., Mashayekhi, M.R., Hasan pour, A. and Ayubi, M.R. (2016). Evaluation of the genetic diversity of Iranian Kurdish horses. Animal Science Research (Agricultural Knowledge), 27(1): 95-102. [In Persian]
Van Haeringen, H., Bowling, A., Stott, M., Lenstra, J. and Zwaagstra, K. (1994). A highly polymorphic horse microsatellite locus: VHL20. Animal Genetics, 25(3): 207-207.
Vilà, C., Leonard, J.A., Götherström, A., Marklund, S., Sandberg, K., Lidén, K., et al. (2001). Widespread origins of domestic horse lineages. Science, 291(5503): 474-477.
Weinstock, J., Willerslev, E., Sher, A., Tong, W., Y.W Ho, S., Rubenstein, D., et al. (2005). Evolution, systematics, and phylogeography of Pleistocene horses in the New World: a molecular perspective. PLoS Biology, 3(8): 241-248.
Wimmers, K., Ponsuksili, S., Schmoll, F., Hardge, T., Hatzipanagiotou, A., Weber, J., et al. (1998). Efficiency of microsatellite markers of the international standard panel for parentage control in German horse populations. Zuechtungskunde (Germany), 70(4): 233-241.
_||_
Ala-Amjadi, M., Yeganeh, H. and Sadeghi, M. (2017). Study of genetic variation in Iranian Kurdish horse using microsatellite marker. Iranian Journal of Animal Science, 48(3): 335-342. [In Persian]
Banaabadi, H., Mashayekhi, M.R., Hasanpour, A. and Ayubi, M.R. (2017). The study of genetic variability of Arabian and Caspian horses using microsatellite. Journal of Animal Science Researches, 27(3): 175-183. [In Persian]
Binns, M. and Holmes, N. (1995). The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing. British Veterinary Journal, 151(1): 9-15.
Botstein, D. and White, R.L. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3): 314-331.
Bowling, A. (2001). Historical development and application of molecular genetic tests for horse identification and parentage control. Livestock Production Science, 72(1-2): 111-116.
Chowdhary B.P. and Raudsepp, T. (2000). Cytogenetics and physical gene maps. In: The Genetics of The Horse. Bowling A.T. and Ruvinsky A. editors., New York: CABI Publishing, pp:171-242.
Ellegren, H., Johansson, M., Sandberg, K. and Andersson, L. (1992). Cloning of highly polymorphic microsatellites in the horse. Animal Genetics, 23(2): 133-142.
Evans, A.R. and Janis, C.M. (2014). The evolution of high dental complexity in the horse lineage. Annales Zoologici Fennici, BioOne, 51(1): 73-79.
Fornal, A., Radko, A. and Piestrzyńska-Kajtoch, A. (2013). Genetic polymorphism of Hucul horse population based on 17 microsatellite loci. Acta Biochimica Polonica, 60(4): 761-765.
Ghaheri, M., Kahrizi, D., Yari, K., Babaie, A., Suthar, R.S. and Kazemi, E. (2016). A comparative evaluation of four DNA extraction protocols from whole blood sample. Cellular and Molecular Biology, 62(3): 120-124.
Grubb, P. (2005). Order Perissodactyla, Mammals Species of the World, A Taxonomic and Geographic Reference. 3rd ed., The Johns Hopkins University Press, Baltimore, pp: 629-636.
Guekin, G., Bertaud, M. and Amigues, Y. (1994). Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Animal Genetics, 25(1): 62-62.
Kavar, T., Habe, F., Brem, G. and Dovč, P. (1999). Mitochondrial D‐loop sequence variation among the 16 maternal lines of the Lipizzan horse breed. Animal Genetics, 30(6): 423-430.
Kimpton, C., Fisher, D., Watson, S., Adams, M. Urquhart, A., Lygo, J., et al. (1994). Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. International Journal of Legal Medicine, 106(6): 302-311.
Lee, S.Y. and Cho, G.J. (2006). Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing. Journal of Veterinary Science, 7(1): 63-67.
Luís, C., Bastos-Silveira, C., Gus Cothran, E. and Do Mar Oom, M. (2006). Iberian origins of New World horse breeds. Journal of Heredity, 97(2): 107-113.
Melnyk, O.V., Spyrydonov, V.G., Dzitsiuk, V.V. and Osadchyj, S.A. (2013). Molecular-Genetic CHaracterization of Shetland pony using microsatellite loci of DNA. The Animal Biology, 15(4): 73-79.
Micka, K.A., Sprecher, C., Lins, A., Comey, C., Koons, B., Crouse, C., et al. (1996). Validation of multiplex polymorphic STR amplification sets developed for personal identification applications, Journal of Forensic Science, 41(4): 582-590.
Miller, S., Dykes, D. and Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3): 1215-1216.
Seyedabadi, H., Amirinia, C., Banabazi, M.H. and Emrani, H. (2006). Parentage verification of Iranian Caspian horse using microsatellites markers. Iranian Journal of Biotechnology, 4(4): 260-264.
Shelyov, A., Melnyk, O., Suprun, I., Spyrydonov, V., Melnychvk, S., Dzitsiuk, V., et al. (2014). The comparative analysis of the allele pool of Thoroughbred horses in different countries. Iranian Journal of Applied Animal Science, 4(3): 637-641.
Solis, A., Jugo, B., Mériaux, J., Iriondo, M., Mazón, L., Aguirre, A., et al. (2005). Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation. Journal of Heredity, 96(6): 670-678.
Vahdani, M.A., Mashayekhi, M.R., Hasan pour, A. and Ayubi, M.R. (2016). Evaluation of the genetic diversity of Iranian Kurdish horses. Animal Science Research (Agricultural Knowledge), 27(1): 95-102. [In Persian]
Van Haeringen, H., Bowling, A., Stott, M., Lenstra, J. and Zwaagstra, K. (1994). A highly polymorphic horse microsatellite locus: VHL20. Animal Genetics, 25(3): 207-207.
Vilà, C., Leonard, J.A., Götherström, A., Marklund, S., Sandberg, K., Lidén, K., et al. (2001). Widespread origins of domestic horse lineages. Science, 291(5503): 474-477.
Weinstock, J., Willerslev, E., Sher, A., Tong, W., Y.W Ho, S., Rubenstein, D., et al. (2005). Evolution, systematics, and phylogeography of Pleistocene horses in the New World: a molecular perspective. PLoS Biology, 3(8): 241-248.
Wimmers, K., Ponsuksili, S., Schmoll, F., Hardge, T., Hatzipanagiotou, A., Weber, J., et al. (1998). Efficiency of microsatellite markers of the international standard panel for parentage control in German horse populations. Zuechtungskunde (Germany), 70(4): 233-241.