Analysis of chaotic vibration in a hexagonal centrifugal governor system
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringمصطفی غیور 1 , سعید ضیایی راد 2 , حبیب رمضان نژاد آزاربنی 3
1 - استادیار، دانشکده مکانیک، دانشگاه صنعتی اصفهان
2 - دانشیار، دانشکده مکانیک، دانشگاه صنعتی اصفهان
3 - کارشناس ارشد، دانشکده مکانیک، دانشگاه صنعتی اصفهان
Keywords: Governor, Chaotic vibration, Lyapunov Exponent, Poincare's Mapping, Power Spectrum,
Abstract :
In this paper, the periodic, quasi periodic and chaotic responses of rotational machines with a hexagonal centrifugal governor are studied. The external disturbance is assumed as a sinusoid effect. By using the forth order Rung-Kutta numerical integration method, bifurcation diagram, largest Lyapunov exponent and Lyapunov dimension are calculated and presented to detect the critical controlling parameter. Having known the critical values, phase portrait, Poincare maps, time history and power spectrum are presented to observe periodic, quasi-periodic and chaotic behaviors of the system. Finally, the system damping is used as a parameter to control chaos. It is shown that by increasing the system damping, the chaotic behavior of the system converts to a periodic motion.
[1] governor with a spring, Journal of Sound and Vibration, Vol. 262,pp. 845–864, 2003.
[2] Q. Zhu, M. Ishitobi, S. Nagano, Condition of chaotic vibration in a entrifugal governor, Journal of Sound and Vibration, Vol. 268 , pp.627–631 , 2003.
[3] Zheng-Ming Ge, Ching-I Lee, Anti control and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor, Journal of Sound and Vibration, Vol. 282, pp. 635–648 , 2005.
[4] Zheng-Ming Ge, Wei-Ren Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Solitons and Fractals, 2006.
[5] Sotomayora, J. Mellob, L.F., Denis de Carvalho Bragac, Stability and Hopf bifurcation in an hexagonal governor system, Nonlinear Analysis: RealWorld Applications , 2007.
[6] Moon. F.C., Chaotic Vibration, An Introduction for Applied Scientists and Engineers, John Wily & sons, New Jersey, 2004.
[7] Nayfeh. A.H., Balakumar, B., Applied Nonlinear Dynamic, Analytical, Computational and Experimental Method, John Wily & sons, New York, 1995.
[8] رمضاننژاد آزاربنی، حبیب، تحلیل ارتعاشات آشوبناک در سیستم های دینامیکی (گاورنر گریز از مرکز)، پایان نامه کارشناسی ارشد مهندسی مکانیک، دانشگاه صنعتی اصفهان، دانشکده مکانیک، 1386