Study Of Thermoelastic Damping in an Electrostatically Deflected Circular Micro-Plate Using Hyperbolic Heat Conduction Model
Subject Areas : EngineeringG Rezazadeh 1 , S Tayefeh-rezaei 2 , A Saeedi Vahdat 3 , V Nasirzadeh 4
1 - Mechanical Engineering Department, Urmia University
2 - Mechanical Engineering Department, Urmia University
3 - Photo-Acoustics Research Laboratory, Nanomechanics/Nanomaterials, Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY, USA
4 - Mechanical Engineering Department, Islamic Azad University, Arak Branch
Keywords: Quality Factor, MEMS, Electrostatic actuation, Internal damping, Circular Micro-Plate,
Abstract :
Thermoelastic damping (TED) in a circular micro-plate resonator subjected to an electrostatic pressure is studied. The coupled thermo-elastic equations of a capacitive circular micro plate are derived considering hyperbolic heat conduction model and solved by applying Galerkin discretization method. Applying complex-frequency approach to the coupled thermo-elastic equations, TED is obtained for different ambient temperatures. Effects of the geometrical parameters on TED and the critical thickness are investigated. Furthermore, the effect of applied bias DC voltage on TED for an electrostatically deflected micro-plate is also investigated.
[1] Rezazadeh G., Vahdat A.S., Pesteii S.M., Farzi B., 2009, Study of thermoelastic damping in capacitive micro-beam resonators using hyperbolic heat conduction model, Sensors and Transducers Journal 108(9): 54-72.
[2] Fang D., Sun Y., Soh A.K., 2007, Advances in thermoelastic damping in micro and nano- mechanical resonators, Solid Mechanics and Materials Engineering, doi:10/1299/jmmp.1.18.
[3] Sun Y., Tohmyoh H., 2009, Thermoelastic damping of the axisymmetric vibration of circular plate resonators, Sound and Vibration, doi:10.1016/j.jsv.2008.06.017.
[4] Nayfeh A.H., Younis M.I., 2004, Modeling and simulations of thermoelastic damping in Microplates, Micromechanics and Microengineering, doi:10.1088/0960-1317/14/12/016.
[5] Ardito R., Comi C., Corigliano A., Frangi A., 2008, Solid damping in micro electro mechanical systems, Meccanica, doi:10.1007/s11012-007-9105-3.
[6] Vengallatore S., 2005, Analysis of thermoelastic damping in laminated composite micromechanical beam resonators, Micromechanics and Microengineering, doi:10.1088/0960-1317/15/12/023.
[7] Houston B.H., Photiadis D.M., Marcus M.H., Bucaro J.A., Liu X., Vignola J.F., 2002, Thermoelastic loss in microscale oscillators, Applied Physics Letters 80(7): 90-99.
[8] M´endez C., Paquay S., Klapka I., Raskin J.-P., 2009, Effect of geometrical nonlinearity on MEMS thermoelastic damping, Nonlinear Analysis, doi:10.1016/j.nonrwa.2008.02.002.
[9] Liua X., Hauckea H., Vignolab J.F., Simpsona H.J., Baldwina J.W., Houstona B.H., Photiadis D.M., 2009, Understanding the internal friction of a silicon micro-mechanical oscillator, Materials Science and Engineering, doi:10.1016/j.msea.2008.10.065.
[10] Duwel A., Candler R.N., Kenny T.W., Varghese M., 2006, Engineering MEMS resonators with low thermoelastic damping, JMEMS Journal 15(6): 1437-1445.
[11] Sudipto K. D., Aluru N. R., 2006, Theory of thermoelastic damping in electrostatically actuated microstructures, Physical Review B, doi:10.1103/PhysRevB.74.144305.
[12] Lifshitz R., Roukes M. L., 2000, Thermoelastic damping in micro- and nano mechanical systems, Physical Review B 61(8): 5600-5609.
[13] Wong S.J., Fox C.H.J., William S.M., 2006, Thermoelastic damping of the in-plane vibration of thin silicon rings, Sound and Vibration 293 (1-2): 266–285.
[14] Lu P., Lee H.P., Lu C., Chen H.B., 2008, Thermoelastic damping in cylindrical shells with application to tubular oscillator structures, Mechanical Sciences, doi:10.1016/j.ijmecsci.2007.09.016.
[15] Zamanian M., Khadem S.E., 2010, Analysis of thermoelastic damping in micro resonators by considering the stretching effect, Mechanical Sciences, doi:10.1016/j.ijmecsci.2010.07.001.
[16] Choi J., Cho M., Rhim J., 2010, Efficient prediction of the quality factors of micromechanical resonators, Sound and Vibration, doi:10.1016/j.jsv.2009.09.013.
[17] Muller C., Baborowski J., Pezous A., Dubois M.A., 2009, Experimental evidence of thermoelastic damping in silicon tuning fork, in: Proceedings of the Eruosensors XXIII conference, Lausanne, Switzerland , 1395–1398.
[18] Zener C., 1937, Internal friction in solids. I. Theory of internal friction in reeds, Physical Review 52(3): 230-235.
[19] Zener C., 1938, Internal friction in solids. II. General theory of thermoelastic internal friction, Physical Review 53(1): 90-99.
[20] Lepage S., 2006, Stochastic finite element method for the modeling of thermoelastic damping in microresonators, Ph. D. Dissertation, University of Liege, Department of Aerospace and Mechanics.
[21] Lifshitz R., 2002, Phonon-mediated dissipation in micro- and Nano-mechanical systems, Physica B (316-317): 397-399.
[22] Goken J., Riehemann W., 2002, Thermoelastic damping of the low density metals AZ91 and DISPAL, Materials Science and Engineering A (324):134-140.
[23] Vahdat A.S, Rezazadeh G., 2011, Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonator, Franklin Institute Journal 384(4):622-639.
[24] Vahdat A.S, Rezazadeh G., Ahmadi G., 2012, Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers, Acta Mechanica Solidia Sinica 25(1):73-81.
[25] Yi Y.B., 2008, Geometric effects on thermoelastic damping in MEMS resonators, Sound and Vibration, doi:10.1016/j.jsv.2007.07.055.
[26] Rezazadeh G., Tahmasebi A., Zubstov M., 2006, Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage, Microsystem Technology 12(12): 1163-1170.
[27] Sun Y., Saka M., 2010, Thermoelastic damping in micro-scale circular plate resonators, Sound and Vibration, doi:10.1016/j.jsv.2009.09.014
[28] Sun Y., Saka M., 2008, Vibrations of microscale circular plates induced by ultra-fast lasers, Mechanical Sciences, doi:10.1016/j.ijmecsci.2008.07.006.
[29] Hao Z., 2008, Thermoelastic damping in the contour-mode vibrations of micro- and nano-electromechanical circular thin-plate resonators, Sound and Vibration, doi:10.1016/j.jsv.2007.11.035.
[30] Xuefeng S., Xiaoqing Z., Jinxiang Z., 2000, Thermoelastic free vibration of clamped circular plate, Applied Mathematics and Mechanics, 21(6):715-724.
[31] Rezazadeh G., Rezaei S.T., Jafar G., Tahmasebi A., 2007, Investigation of the pull-in phenomenon in drug delivery micropump using galerkin method, Sensors and Transducers 78(4):1098-1107.
[32] Gere J. M., Timoshenko S.P., 1997, Mechanics of Materials, PWS publishing Co, Boston, MA., Fourth Edition.
[33] Lobontiu N.O., 2005, Mechanical Design of Microresonators, McGraw-HILL Nanoscience and Technology Series.
[34] Sharpe W. N., Hemker K. J., Edwards R. L., 2004, Mechanical properties of MEMS materials, Final Technical Report, AFRL-IF-RS-TR-2004-76.
[35] Yasumura K.Y, Stowe T.D, Chow E.M, Pfafman T, Kenny T.W, Stipe B.C, Rugar D., 2000, Quality factors in micron- and submicron-thick cantilevers, Microelectromechanical Systems 9(1): 117-125.