اثر محلول پاشی آهن و روی و زمان های برداشت بر جوانه زنی و برخی ویژگی های بیوشیمیایی سویا رقم ویلیامز 82
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیآرمین پورصفر 1 , محمد صدقی 2 , رئوف سیدشریفی 3 , محمد حسن زاده 4 *
1 - گروه مهندسی تولید و ژنتیک به نژادی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
2 - گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
4 - گروه علوم گیاهی، دانشکده کشاورزی و منابع طبیعی مغان، دانشگاه محقق اردبیلی، اردبیل، ایران.
کلید واژه: عملکرد دانه, درصد روغن, پروتئین دانه, ریزمغذی, کیفیت بذر,
چکیده مقاله :
جهت بررسی تغییرات جوانهزنی بذر سویا (Glycine max) و برخی ویژگیهای بیوشیمیایی آن، آزمایش فاکتوریلی در قالب بلوکهای کامل تصادفی در مرکز تحقیقات کشاورزی و منابع طبیعی استان اردبیل (مغان) در سال زراعی 1400-1399 اجرا گردید. تیمارها شامل فاکتور محلولپاشی سولفات آهن و سولفات روی در دو سطح و زمان برداشت در سه سطح: غلاف سبز، رسیدگی فیزیولوژیک و غلاف رسیده خشک بود. طبق نتایج، اثر متقابل محلولپاشی و زمان برداشت بر عملکرد دانه و درصد پروتئین معنی دار بود و بیشترین مقادیر هر دو صفت در استفاده از سولفات روی در برداشت غلاف خشک بدست آمد. درصد روغن دانه متاثر از هر دو تیمار گردید، بطوریکه بیشترین درصد روغن در برداشت غلاف سبز به میزان 4/21 درصد بدست آمد و سولفات روی بیشترین تاثیر را بردرصد روغن به میزان 3/20 درصد دارا بود. اثر متقابل محلولپاشی و زمان برداشت بر مقدار آهن و روی بذر معنی دار بود و بیشترین مقدار آهن بذر (6/121 میلیگرم در کیلوگرم) در کاربرد سولفات آهن و بیشترین مقدار روی بذر (1/91 میلیگرم در کیلوگرم) در کاربرد سولفات روی، هر دو در برداشت رسیدگی فیزیولوژیک بدست آمد. درصد جوانه زنی متاثر از اثر متقابل محلولپاشی و زمان برداشت گردید و بیشترین مقدار (6/96) در تیمار سولفات روی در برداشت غلاف خشک مشاهده گردید. بطور کلی، مصرف روی باعث افزایش جوانه زنی، میزان روی، درصد روغن و عملکرد دانه شد و مصرف آهن باعث بهبود میزان پروتیین دانه گردید. برداشتهای رسیدگی فیزیولوژیک و غلاف خشک باعث بهبود صفات اندازه گیری شده بجز روغن دانه گردید.
In order to study the changes of seed germination of soybean (Glycine max) and some biochemical characteristics, a factorial experiment as randomized complete block design was conducted at the Agricultural and Natural Resources Research Center of Ardabil Province (Maghan) in 2020-2021. Treatments included 2 spraying factors as iron and zinc sulfates besides three harvesting times: green pod, physiological maturity and dry mature pod. According to the results, interactions of spraying and harvesting time were significant on grain yield and protein percentage, and the highest amounts of both traits were obtained by applying zinc sulfate at dry mature pod. Seed oil content was affected by both treatments so that, the highest amount was obtained at the green pod at rate of 21.4% and zinc sulfate had the greatest effect on grain oil percentage at rate of 20.3%. Furthermore, interaction of spraying and harvesting time was significant on seed Fe and Zn contents and results showed that the highest amount of seed Fe (121.6 mg/kg) was achieved by iron sulfate and that of seed Zn (91.1 mg/kg) by zinc sulfate, both at the physiological maturity. Seed germination was also affected by interaction of spraying and harvesting time and the highest rate (96.6%) was observed at dry mature pod by applying zinc sulfate. In general, Zn consumption increased germination percentage, grain rate, seed oil percentage and grain yield, and iron consumption improved grain protein. The physiological maturity and dry mature pod harvestings improved the values of measured traits except the seed oil.
مرادی تلاوت، م. ر.، ف.، روشن، و س. ع. سیادت. 1394. اثر محلول پاشی سولفات روی بر محتوای عناصر معدنی، عملکرد دانه و روغن دو رقم گلرنگ (Carthamus tinctorius L.). مجله علوم زراعی ایران. جلد 17، شماره 2: 164-153.
Abdoli, M. and E. Esfandiari. 2017. Effect of seed zinc content on vigor and seedling growth parameters of wheat grown in different levels of salinity. Int. J. Adv. Life Sci. 10 (2): 263-271.
Adamczyk-Szabela, D. and W. M. Wolf. 2022. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules. 27: 4671.
Ali, I. M., R. Nulit, M. H. Ibrahim and Md. K. Uddin. 2018. Effect of delay harvest on seed quality and germination of three varieties of soybean (Glycine max) seeds. Plant Arch.18 (2): 1961-1966.
Ceballos-Laita, L., D. Takahashi, M. Uemura, J. Abadía, A. F. López-Millán and J. Rodríguez-Celma. 2022. Effects of Fe and Mn deficiencies on the root protein profiles of tomato (Solanum lycopersicum) using two-dimensional electrophoresis and label-free shotgun analyses. Int. J. Mol. Sci 23(7): 3719.
Choudhary, H. D., S. R. Sharma, R. S. Jat and G. Jat. 2015. Effect of soil and foliar application of zinc and iron on yield, quality and economics of Fennel. Ann. Plant Soil Res. 17(2): 200-203.
de Oliveira, A. P. and J. Naozuka. 2017. Effects of iron enrichment of Adzuki bean (Vigna angularis) sprouts on elemental translocation, concentrations of proteins, distribution of Fe-metalloproteins, and Fe bioaccessibility. J. Braz. Chem. Soc.28(10): 1937-1946.
Dilip, I. P., G. Kasivelu, T. Selvarja, K. Malaichamy, V. Raguraman, C. Sumit and S. Doron. 2021. Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol. Biochem. 162: 564-580.
Dong, J., F. Wu, and G. Zhang. 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Plant Physiol. Biochem. 64: 1659-1666.
Doolette, C. L., T. L. Read, C. Li, K. G. Scheckel, E. Donner, P. M. Kopittke, J. K. Schjoerring and E. Lombi. 2018. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. J. Exp. Bot. 69: 4469–4481.
El-Habbasha, E. S., E. A. Badr and E. A. Latef. 2015. Effect of zinc foliar application on growth characteristics and grain yield of some wheat varieties under Zn deficient sandy soil condition. Int. J. Chemtech Res. 8 (6): 452-458.
Gaikwad, A. P. and R. W. Bharud. 2017. Effect of time of harvesting on physical and chemical properties of soybean (Glycine max M.) seed. Int. J. Curr. Microbiol. Appl. Sci. 6 (4): 1092-1097.
Grela, E. R., W. Samolińska, B. Kiczorowska, R. Klebaniuk and P. Kiczorowski. 2017. Content of minerals and fatty acids and their correlation with phytochemical compounds and antioxidant activity of leguminous seeds. Biol. Trace Elem. Res. 180 (2): 338-348.
Hidoto, L., W. Worku, H. Mohammed and B. Taran. 2017. Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. J. Soil Sci. Plant Nutr. 17 (1): 112-126.
Imran, M., D. Garbe-Schönberg, G. Neumann, B. Boelt and K. H. Mühling. 2017. Zinc distribution and localization in primed maize seeds and its translocation during early seedling development. Environ. Exp. Bot. 143: 91-98.
Isaac, O. T., B. K. Banful, S. Amoah, S. Apuri and E. A. Seweh. 2016. Effect of harvesting stages on seed quality characteristics of three soybean (Glycine Max (L) Merrill) varieties. J. Sci. Eng. Res. 3 (4): 326-333.
Jalal, A., F. S. Galindo, E. H. M. Boleta, C. E. d. S. Oliveira, A. R. d. Reis, T. A. R. Nogueira, M. J. Moretti Neto, E. S. Mortinho, G. C. Fernandes and M. C. M. Teixeira Filho. 2021. Common bean yield and zinc use efficiency in association with diazotrophic bacteria co-inoculations. Agronomy. 11 (959): 1-20.
Jat, G., S. K. Sharma, R. H. Meena, R. Choudhary, R. S. Choudhary and S. K. Yadav. 2021. Studies on effect of zinc application on quality and yield of soybean (Glycine max L.) under typic haplustepts soil. Indian J. Pure Appl. Biosci. 9 (1): 188-193.
Jiménez-Rosado, M., V. Pérez-Puyana, F. Cordobés, A. Romero and A. Guerrerob. 2018. Development of soy protein-based matrices containing zinc as micronutrient for horticulture. Ind Crops Prod. 121: 345-351.
Joorabi, S., H. R. Eisvand, A. Ismaili and A. Nasrolahi. 2020. ZnO affects soybean grain yield, oil quantity, quality, and leaf antioxidant activity in drought stress conditions. Journal of Plant Process and Function. 8 (34): 61-70.
Kambhampati, S., J. Li, B. S. Evans and D. K. Allen. 2019. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Methods. 15 (46): 11-12.
Krzyczkowska, J. and M. Kozłowska. 2017. Effect of oils extracted from plant seeds on the growth and lipolytic activity of Yarrowia lipolytica yeast. J. Am. Oil Chem. Soc. 94: 661-671.
Majeed, A., W. A. Minhas, N. Mehboob, S. Farooq, M. Hussain, S. Alam and M. S. Rizwan. 2020. Iron application improves yield, economic returns and grain-Fe concentration of mung bean. PLoS ONE. 15(3): e0230720.
Mari, S., C. Bailly and S. Thomine. 2020. Handing off iron to the next generation: how does it get into seeds and what for?. Biochem. J. 477 (1): 259-274.
Metoh, T. N., T. N. Wakai, P. Fon Gah and J. Chmielowska-Bak. 2019. Iron-fortification of soybean seeds - effect on phenolic and phytic acid and phosphorous contents and germination rates in soybean sprouts. Int. J. Manag. Sci. Eng. Manag. 7 (12): 6-23.
Mirakhorli, T., Z. O. Ardebili, A. Ladan-Moghadam and E. Danaee. 2021. Bulk and nanoparticles of zinc oxide exerted their beneficial effects by conferring modifications in transcription factors, histone deacetylase, carbon and nitrogen assimilation, antioxidant biomarkers, and secondary metabolism in soybean. PLoS ONE. 16: e0256905.
Montanha, G. S., E. S. Rodrigues, J. P. Rodrigues Marques, E. de Almeida, M. Colzato and H. W. P. de Carvalh. 2020. Zinc nanocoated seeds: an alternative to boost soybean seed germination and seedling development. SN Appl. Sci. 2: 857.
Moore, K. L., I. Rodríguez-Ramiro, E. R. Jones, E. J. Jones, J. Rodríguez-Celma, K. Halsey, C. Domoney, P. R. Shewry, S. Fairweather-Tait and J. Balk. 2018. The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Sci. Rep. 8: 6865.
Ngo, Q. B., T. H. Dao, H. C. Nguyen, X. T. Tran, T. V. Nguyen, T. D. Khuu and T. H. Huynh. 2014. Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv. Nat. Sci.: Nanosci. Nanotechnol. 5: 015016.
Niyigaba, E., A. Twizerimana, I. Mugenzi, W. A. Ngnadong, Y. P. Ye, B. M. Wu and J. B. Hai, 2019. Winter wheat grain ouality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy. 9(5): 250.
Panwar, P. and S. D. Bhardwaj. 2005. Handbook of practical forestry, Agrobios (India), 191p.
Rawashdeh, R. Y., A. M. Harb and A. M. AlHasan. 2020. Biological interaction levels of zinc oxide nanoparticles; lettuce seeds as case study. Heliyon. 6(5): e03983.
Seddigh, M., A. H. Khoshgoftarmanesh and S. Ghasemi. 2016. The effectiveness of seed priming with synthetic zinc-amino acid chelates in comparison with soil-applied ZnSO4 in improving yield and zinc availability of wheat grain. J. Plant Nutr. 39(3): 417-427.
Sheykhbaglou, R., M. Sedghi and B. Fathi-Achachlouie. 2018. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An. Acad. Bras. Cienc. 90 (1): 485-494.
Tripathi, D. K., S. Singh, S. Gaur, S. Singh, V. Yadav, S. Liu,V. P. Singh, S. Sharma, P. Srivastava, S. M. Prasad, N. K. Dubey, D. K. Chauhan and S. Sahi. 2018. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front. Environ. Sci. 5 (86): 1-15.
Ullah, A., M. Farooq, F. Nadeem, A. Rehman, M. Hussain, A. Nawaz and M. Naveed. 2020. Zinc application in combination with zinc solubilizing enterobacter sp. MN17 improved productivity, profitability, zinc efficiency, and quality of desi chickpea. J. Soil Sci. Plant Nutr. 20: 2133–2144.
Upadhyaya, H., H. Roy, S. Shome, S. Tewari, M. K. Bhattacharya and S. K. Panda. 2017. Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L) seed. J. Plant Sci. Phytopathol. 1: 062-070.
Vogel, J. T., W. Liu, P. Olhoft, S. J. Crafts-Brandner, J. C. Pennycooke and N. Christiansen. 2021. Soybean yield formation physiology – A foundation for precision breeding based improvement. Front. Plant Sci. 12: 719706.
Sharma, J. K., G. Jat, R. H. Meena, H. S. Purohit and R. S. Choudhary. 2017. Effect of vermicompost and nutrients application on soil properties, yield and uptake and quality of Indian mustard. Ann. Plant Soil Res. 19(1): 17-22.
Wasaya, A., M. S. Shabir, M. Hussain, M. Ansar, A. Aziz, W. Hassan and I. Ahmad. 2017. Foliar application of Zinc and Boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. J. Soil Sci. Plant Nutr. 17 (1): 33-45.
Yasmeen, F., N. I. Raja, A. Razzaq and S. Komatsu. 2016. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. Biochim. Biophys. Acta Proteins Proteom. 1864: 1586-1598.
Yusefi-Tanha, E., S. Fallah, A. Rostamnejadi and L. R. Pokhrel. 2020. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 738: 140240.
_||_