The relationships between BNP levels with cardiac structure and function in resistance-trained athletes
Subject Areas : Journal of Physical Activity and Hormones
1 - MS in exercise physiology, Department of Exercise physiology, Marvdasht branch, Islamic Azad University, Marvdasht, Iran
Keywords: Cardiac structure, Cardiac function, B-type natriuretic peptide, Resistance-trained athletes,
Abstract :
Introduction: Echocardiography and the B-type natriuretic peptides (BNPs) provide powerful incremental assessment of cardiac function, clinical status, and outcome across the spectrum of cardiac disease. Although the previous studies demonstrated the relationships between BNP levels and cardiac structure and function in heart failure patients, but these relationships in athletes are not well known. The present study was conducted to examine the relationships between BNP levels with cardiac structure and function in resistance-trained athletes. Material & Methods: Fifteen resistance-trained male athletes (aged: 23.0 ± 1.4 years and BMI: 24.1 ± 1.4 kg/m2; ± SD) volunteered to participate in this study. BNP concentrations were assessed by enzyme-linked immunosorbent assay (ELISA) kits and cardiac morphology and function were assessed by echocardiography. Spearman correlation test was used to analyze the relationship between the variables. Results: The results demonstrated that there were no significant relationships between BNP concentrations with posterior wall thickness of left ventricle at end diastole (PWTLV) (r = ‒ 0.35 , P = 0.1), interventricular septal (r = ‒ 0.25 , P = 0.3), aorta (r = 0.07 , P = 0.8) and pulmonary artery (r = ‒ 0.06 , P = 0.8) diameter, diastolic left ventricle internal dimension (DLVID) (r = ‒ 0.33 , P = 0.2), systolic left ventricle internal dimension (SLVID) (r = 0.2 , P = 0.4), left ventricle ejection fraction (LVEF) (r = 0.21 , P = 0.4), left ventricle end-diastolic volume (LVEDV) (r = ‒ 0.23 , P = 0.4) and left ventricle end-systolic volume (LVESV) (r = ‒ 0.23 , P = 0.4). Conclusions: In conclusion, BNP concentration is not a powerful predictor for cardiac structure and function in resistance-trained athletes
1. Costello-Boerrigter LC, Burnett JC (jun). The prognostic value of N-terminal proB-type natriuretic peptide. Nat Clin Pract Cardiovasc 2005; 2: 194-201.
2. Anand IS, Fisher LD, Chiang Y, Latini R, Masson S, Maggioni AP, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsaratan Heart Failure Trial (Val-HeFT). Circulation 2003; 107: 1278-1283.
3. Schnabel R, Lubos E, Rupprecht H, Espinola-Klein C, Bickel C, Lackner KJ, et al. B-type natriuretic peptide and the risk of cardiovascular events and death in patients with stable angina. J Am Coll Cardiol 2006; 47: 552-558.
4. Martinez-Rumayor A, Richards AM, Burnett JC, Januzzi JL Jr. Biology of the natriuretic peptides. Am J Cardiol 2008; 101: 3-8.
5. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC Jr. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002; 40: 976-982.
6. Das SR, Drazner MH, Dries DL, Vega GL, Stanek HG, Abdullah SM, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study. Circulation 2005; 112: 2163-2168.
7. Vickery S, Price CP, John RI, Abbas NA, Webb MC, Kempson ME, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis 2005; 46: 610-620.
8. Troughton RW, Richards AM. B-type natriuretic peptides and echocardiographic measures of cardiac structure and function. JACC Cardiovasc Imaging 2009; 2: 216-225.
9. Groenning BA, Nilsson JC, Sondergaard L, Pedersen F, Trawinski J, Baumann M, et al. Detection of left ventricular enlargement and impaired systolic function with plasma N-terminal pro brain natriuretic peptide concentrations. Am Heart J 2002; 143: 23-29.
10. Gustafsson F, Badskjær J, Hansen FS, Paulsen AH, Hildebrandt P. Value of N-terminal proBNP in the diagnosis of left ventricular systolic dysfunction in primary care patients referred for echocardiography. Heart Drug 2003; 3: 141-146.
11. Gardner RS, Ozalp F, Murday AJ, Robb SD, McDonagh TA. N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 2003; 24: 1735-1743.
12. Costello-Boerrigter LC, Boerrigter G, Redfield MM, Rodeheffer RJ, Urban LH, Mahoney DW, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol 2006; 47: 345-353.
13. Yamamoto K, Burnett JC Jr, Jougasaki M, Nishimura RA, Bailey KR, Saito Y, et al. Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension 1996; 28: 988-994.
14. Yamaguchi H, Yoshida J, Yamamoto K, Sakata Y, Mano T, Akehi N, et al. Elevation of plasma brain natriuretic peptide is a hallmark of diastolic heart failure independent of ventricular hypertrophy. J Am Coll Cardiol 2004; 43: 55-60.
15. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol 2006; 47: 742-748.
16. Tschope C, Kasner M, Westermann D, Gaub R, Poller WC, Schultheiss HP. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Eur Heart J 2005; 26: 2277-2284.
17. Troughton RW, Prior DL, Pereira JJ, Martin M, Fogarty A, Morehead A, et al. Plasma B-type natriuretic peptide levels in systolic heart failure: importance of left ventricular diastolic function and right ventricular systolic function. J Am Coll Cardiol 2004; 43: 416-422.
18. Abhayaratna WP, Marwick TH, Becker NG, Jeffery IM, McGill DA, Smith WT. Population-based detection of systolic and diastolic dysfunction with amino-terminal pro-B-type natriuretic peptide. Am Heart J 2006; 152: 941-948.
19. Lim TK, Ashrafian H, Dwivedi G, Collinson PO, Senior R. Increased left atrial volume index is an independent predictor of raised serum natriuretic peptide in patients with suspected heart failure but normal left ventricular ejection fraction: implication for diagnosis of diastolic heart failure. Eur J Heart Fail 2006; 8: 38-45.
20. Huang W, Lee M, Perng H, Yang S, Kuo S, Chang H. Circulating brain natriuretic peptide values in healthy men before and after exercise. Metabolism 2002; 51: 1423-1426.
21. Bordbar S, Bigi MA, Aslani A, Rahimi E, Ahmadi N. Effect of endurance and strength exercise on release of brain natriuretic peptide. J Cardiovasc Dis Res 2012; 3: 22-25.
22. Armstrong WF, Feigenbaum H. Echocardiography. In: Braunwald E, Zipes DP, Libby P, eds. Heart disease: a textbook of cardiovascular medicine, 6th ed. Philadelphia: WB Saunders, 2001: 160-228.
23. Beltran Valls MR, Dimauro I, Brunelli A, Tranchita E, Ciminelli E, Caserotti P, et al. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. Age 2014; 36: 759-772.
24. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging 2014; 15: 680-690.
25. Fagard RH. Impact of different sports and training on cardiac structure and function. Cardiol Clin 1997; 15: 397-412.
26. Haykowsky MJ, Quinney HA, Gillis R, Thompson CR. Left ventricular morphology in junior and master resistance trained athletes. Med Sci Sports Exerc 2000; 32: 349-352.
27. Barauna VG, Rosa KT, Irigoyen MC, de Oliveira EM. Effects of resistance training on ventricular function and hypertrophy in a rat model. Clin Med Res 2007; 5: 114-120.
28. Spirito P, Pelliccia A, Proschan MA, Granata M, Spataro A, Bellone P, et al. Morphology of the “athlete’s heart” assessed by echocardiography in 947 elite athletes representing 27 sports. Am J Cardiol 1994; 74: 802-806.
29. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH. Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation 1991; 83: 1676-1684.
30. Hildick-Smith DJ, Shapiro LM. Echocardiographic differentiation of pathological and physiological left ventricular hypertrophy. Heart 2001; 85: 615-619.
31. Nishimura RA, Housmans PR, Hatle LK, Tajik AJ. Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part I. Physiologic and pathophysiologic features. Mayo Clin Proc 1989; 64: 71-81.
32. Colan SD, Sanders SP, Borow KM. Physiologic hypertrophy: effects on left ventricular systolic mechanics in athletes. J Am Coll Cardiol 1987; 9: 776-783.
33. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308-1320.