Review of Machine Learning Algorithm in Medical Health
Subject Areas : Machine learning
Zahra Ghorbani
1
,
Sahar Behrouzi-Moghaddam
2
,
Shahram Zandiyan
3
,
Nasser Mikaeilvand
4
,
babak nouri moghadam
5
,
Sajjad Jahanbakhsh Gudakahriz
6
,
Ailin Khosravani
7
,
fatemeh Tahmasebizade
8
,
Abbas Mirzaei
9
*
1 - دانشگاه آزاد اسلامی واحد اردبیل
2 - گروه مهندسی کامپیوتر، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
3 - گروه علوم کامپیوتر و ریاضیات، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
4 - Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
5 - Faculty of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
6 - Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
7 - گروه مهندسی کامپیوتر، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
8 - گروه مهندسی کامپیوتر، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
9 - دانشگاه آزاد اسلامی
Keywords: Machine Learning, Medical, Supervised Learning, Classification,
Abstract :
Recently, health-related data has been analyzed using a variety of cutting-edge methods, including artificial intelligence and machine learning. The application of machine learning technologies in the healthcare industry is enhancing medical professionals' proficiency in diagnosis and treatment. Researchers have extensively used medical data to identify patterns and diagnose illnesses. Nevertheless, little research has been done on using machine learning algorithms to enhance the precision and usefulness of medical data. An extensive analysis of the many machine learning methods applied to healthcare applications is given in this work. We first examine supervised and unsupervised machine learning techniques, and then we investigate the applicability of time series tasks on historical data, evaluating their appropriateness for datasets of varying sizes.
[1] Mehrpour, O., Saeedi, F., Vohra, V., Abdollahi, J., Shirazi, F. M., & Goss, F. (2023). The role of decision tree and machine learning models for outcome prediction of bupropion exposure: A nationwide analysis of more than 14 000 patients in the United States. Basic & Clinical Pharmacology & Toxicology, 133(1), 98-110.
[2] Duan, H., & Mirzaei, A. (2023). Adaptive Rate Maximization and Hierarchical Resource Management for Underlay Spectrum Sharing NOMA HetNets with Hybrid Power Supplies. Mobile Networks and Applications, 1-17.
[3] Abdollahi, J. (2022, February). Identification of medicinal plants in ardabil using deep learning: identification of medicinal plants using deep learning. In 2022 27th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-6). IEEE.
[4] Mirzaei, A., & Najafi Souha, A. (2021). Towards optimal configuration in MEC Neural networks: deep learning-based optimal resource allocation. Wireless Personal Communications, 121(1), 221-243.
[5] Abdollahi, J., Davari, N., Panahi, Y., & Gardaneh, M. (2022). Detection of Metastatic Breast Cancer from Whole-Slide Pathology Images Using an Ensemble Deep-Learning Method: Detection of Breast Cancer using Deep-Learning. Archives of Breast Cancer, 364-376.
[6] Shahriyar, O., Moghaddam, B. N., Yousefi, D., Mirzaei, A., & Hoseini, F. (2025). An analysis of the combination of feature selection and machine learning methods for an accurate and timely detection of lung cancer. arXiv preprint arXiv:2501.10980.
[7] Mikaeilvand, N., Ojaroudi, M., & Ghadimi, N. (2015). Band-Notched Small Slot Antenna Based on Time-Domain Reflectometry Modeling for UWB Applications. The Applied Computational Electromagnetics Society Journal (ACES), 682-687.
[8] Li, X., Lan, X., Mirzaei, A., & Bonab, M. J. A. (2022). Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing. Reliability Engineering & System Safety, 220, 108272.
[9] Abdollahi, J., & Mahmoudi, L. (2022, February). An Artificial Intelligence System for Detecting the Types of the Epidemic from X-rays: Artificial Intelligence System for Detecting the Types of the Epidemic from X-rays. In 2022 27th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-6). IEEE.
[10] Somarin, A. M., Barari, M., & Zarrabi, H. (2018). Big data based self-optimization networking in next generation mobile networks. Wireless Personal Communications, 101(3), 1499-1518.
[11] Amani, F., & Abdollahi, J. (2022). Using Stacking methods based Genetic Algorithm to predict the time between symptom onset and hospital arrival in stroke patients and its related factors. Journal of Biostatistics and Epidemiology, 8(1), 8-23.
[12] Jahanbakhsh Gudakahriz, S., Momtaz, V., Nouri-Moghadam, B., Mirzaei, A., & Vajed Khiavi, M. (2025). Link life time and energy-aware stable routing for MANETs. International Journal of Nonlinear Analysis and Applications.
[13] Abdollahi, J., Keshandehghan, A., Gardaneh, M., Panahi, Y., & Gardaneh, M. (2020). Accurate detection of breast cancer metastasis using a hybrid model of artificial intelligence algorithm. Archives of Breast Cancer, 22-28.
[14] PARVAR, M. E., SOMARIN, A. M., TAHERNEZHAD, M. R., & ALAEI, Y. (2015). Proposing a new method for routing improvement in wireless ad hoc networks (optional). Fen Bilimleri Dergisi (CFD), 36(4).
[15] Barzaki, M. A. J. Z., Abdollahi, J., Negaresh, M., Salimi, M., Zolfaghari, H., Mohammadi, M., ... & Amani, F. (2023, November). Using Deep Learning for Classification of Lung Cancer on CT Images in Ardabil Province: Classification of Lung Cancer using Xception. In 2023 13th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 375-382). IEEE.
[16] Narimani, Y., Zeinali, E., & Mirzaei, A. (2022). QoS-aware resource allocation and fault tolerant operation in hybrid SDN using stochastic network calculus. Physical Communication, 53, 101709.
[17] Abdollahi, J. (2023). Evaluating LeNet Algorithms in Classification Lung Cancer from Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases. arXiv preprint arXiv:2305.13333.
[18] Mirzaei, A. (2022). A novel approach to QoS‐aware resource allocation in NOMA cellular HetNets using multi‐layer optimization. Concurrency and Computation: Practice and Experience, 34(21), e7068.
[19] Khavandi, H., Moghadam, B. N., Abdollahi, J., & Branch, A. (2023). Maximizing the Impact on Social Networks using the Combination of PSO and GA Algorithms. Future Generation in Distributed Systems, 5, 1-13.
[20] Jahandideh, Y., & Mirzaei, A. (2021). Allocating Duplicate Copies for IoT Data in Cloud Computing based on Harmony Search Algorithm. IETE Journal of Research, 1-14.
[21] Abdollahi, J., NouriMoghaddam, B., & MIRZAEI, A. (2023). Diabetes Data Classification using Deep Learning Approach and Feature Selection based on Genetic.
[22] Mirzaei, A., Barari, M., & Zarrabi, H. (2019). Efficient resource management for non-orthogonal multiple access: A novel approach towards green hetnets. Intelligent Data Analysis, 23(2), 425-447.
[23] Javadzadeh Barzaki, M. A., Negaresh, M., Abdollahi, J., Mohammadi, M., Ghobadi, H., Mohammadzadeh, B., & Amani, F. (2022, July). USING DEEP LEARNING NETWORKS FOR CLASSIFICATION OF LUNG CANCER NODULES IN CT IMAGES. In Iranian Congress of Radiology (Vol. 37, No. 2, pp. 34-34). Iranian Society of Radiology.
[24] Mirzaei, A., Barari, M., & Zarrabi, H. (2021). An Optimal Load Balanced Resource Allocation Scheme for Heterogeneous Wireless Networks based on Big Data Technology. arXiv preprint arXiv:2101.02666.
[25] Abdollahi, J., Aref, S. Early Prediction of Diabetes Using Feature Selection and Machine Learning Algorithms. SN COMPUT. SCI. 5, 217 (2024). https://doi.org/10.1007/s42979-023-02545-y.
[26] Mirzaei, A., & Rahimi, A. (2019). A Novel Approach for Cluster Self-Optimization Using Big Data Analytics. Information Systems & Telecommunication, 50.
[27] Narimani, Y., Zeinali, E., & Mirzaei, A. (2025). A new approach in fault tolerance in control level of SDN. International Journal of Nonlinear Analysis and Applications, 16(5), 69-76.
[28] Rad, K. J., & Mirzaei, A. (2022). Hierarchical capacity management and load balancing for HetNets using multi-layer optimisation methods. International Journal of Ad Hoc and Ubiquitous Computing, 41(1), 44-57.
[29] Amani, F., Abdollahi, J., & Amani, P. (2024, February). Identify the Factors Influencing Suicide among Ardabil city People Using Feature Selection: Identify the Factors Influencing Suicide among Ardabil using machine learning. In 2024 10th International Conference on Artificial Intelligence and Robotics (QICAR) (pp. 17-23). IEEE.
[30] Barari, M., Zarrabi, H., & Somarin, A. M. (2016). A New Scheme for Resource Allocation in Heterogeneous Wireless Networks based on Big Data. Bulletin de la Société Royale des Sciences de Liège, 85, 340-347
[31] Abdollahi, J., & Mehrpour, O. (2024, February). Using Machine Learning Algorithms for Coronary Artery Disease (CAD) Prediction Prediction of Coronary Artery Disease (CAD) Using Machine Learning Algorithms. In 2024 10th International Conference on Artificial Intelligence and Robotics (QICAR) (pp. 164-172). IEEE.
[32] Mirzaei, A. (2021). QoS-aware Resource Allocation for Live Streaming in Edge-Clouds Aided HetNets Using Stochastic Network Calculus.
[33] Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Rab, S. (2022). Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3, 58-73.
[34] NOSRATIP, M., HOSEINIP, M., SHIRMARZP, A., SOMARINP, A. M., HOSEININIAP, N., BARARIP, M., & Ardebil, I. (2016). Application of MLP and RBF Methods in Prediction of Travelling within the city. Bulletin de la Société Royale des Sciences de Liège, 85, 1392-1396.
[35] Habehh, H., & Gohel, S. (2021). Machine learning in healthcare. Current genomics, 22(4), 291.
[36] Somarin, A. M., Nosrati, M., Barari, M., & Zarrabi, H. (2016). A new Joint Radio Resource Management scheme in heterogeneous wireless networks based on handover. Bulletin de la Société Royale des Sciences de Liège
[37] [19] Swain, S., Bhushan, B., Dhiman, G., & Viriyasitavat, W. (2022). Appositeness of optimized and reliable machine learning for healthcare: a survey. Archives of Computational Methods in Engineering, 29(6), 3981-4003.
[38] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei, A. (2024). Metaheuristic and Data Mining Algorithms-based Feature Selection Approach for Anomaly Detection. IETE Journal of Research, 1-15.
[39] Eckerson, W. W. (2007). Predictive analytics. Extending the Value of Your Data Warehousing Investment. TDWI Best Practices Report, 1, 1-36.
[40] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei, A. (2025). Fraud Prediction in Financial Statements through Comparative Analysis of Data Mining Methods. International Journal of Finance & Managerial Accounting, 10(38), 151-166.
[41] Khanna, N. N., Maindarkar, M. A., Viswanathan, V., Fernandes, J. F. E., Paul, S., Bhagawati, M., ... & Suri, J. S. (2022, December). Economics of artificial intelligence in healthcare: diagnosis vs. treatment. In Healthcare (Vol. 10, No. 12, p. 2493). MDPI.
[42] Nematia, Z., Mohammadia, A., Bayata, A., & Mirzaeib, A. (2024). Predicting fraud in financial statements using supervised methods: An analytical comparison. International Journal of Nonlinear Analysis and Applications, 15(8), 259-272.
[43] Mehrpour, O., Saeedi, F., Abdollahi, J., Amirabadizadeh, A., & Goss, F. (2023). The value of machine learning for prognosis prediction of diphenhydramine exposure: National analysis of 50,000 patients in the United States. Journal of Research in Medical Sciences, 28(1), 49.
[44] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei, A. (2024). The impact of financial ratio reduction on supervised methods' ability to detect financial statement fraud. Karafan Quarterly Scientific Journal.
[45] Mathur, S., & Sutton, J. (2017). Personalized medicine could transform healthcare. Biomedical reports, 7(1), 3-5.
[46] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei, A. (2024). Fraud Risk Prediction in Financial Statements through Comparative Analysis of Genetic Algorithm, Grey Wolf Optimization, and Particle Swarm Optimization. Iranian Journal of Finance, 8(1), 98-130
[47] Berner, E. S. (2007). Clinical decision support systems (Vol. 233). New York: Springer Science+ Business Media, LLC.
[48] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei, A. (2023). Financial Ratios and Efficient Classification Algorithms for Fraud Risk Detection in Financial Statements. International Journal of Industrial Mathematics.
[49] Swarthout, M., & Bishop, M. A. (2017). Population health management: review of concepts and definitions. American Journal of Health-System Pharmacy, 74(18), 1405-1411.
[50] Nematollahi, M., Ghaffari, A., & Mirzaei, A. (2024). Task offloading in Internet of Things based on the improved multi-objective aquila optimizer. Signal, Image and Video Processing, 18(1), 545-552.
[51] De Ville, B. (2013). Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics, 5(6), 448-455.
[52] Hozouri, A., EffatParvar, M., Yousefi, D., & Mirzaei, A. Scheduling algorithm for bidirectional LPT.
[53] Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of machine learning, 15(1), 713-714.
[54] Babazadeh, Z., & Mirzaei, A. A review on methods, ways of decrease delay duties at calculations cloudy.
[55] Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.
[56] Movahhedi, R., Effatparvar, M., & Somarin, A. M. A study on load balancing methods in cloud computing environment.
[57] Cunningham, P., & Delany, S. J. (2021). K-nearest neighbour classifiers-a tutorial. ACM computing surveys (CSUR), 54(6), 1-25.
[58] Ziaeddini, A., Mohajer, A., Yousefi, D., Mirzaei, A., & Gonglee, S. (2022). An optimized multi-layer resource management in mobile edge computing networks: a joint computation offloading and caching solution. arXiv preprint arXiv:2211.15487
[59] Su, X., Yan, X., & Tsai, C. L. (2012). Linear regression. Wiley Interdisciplinary Reviews: Computational Statistics, 4(3), 275-294.
[60] Nokhostin, P., Mirzaei, A., & Jahanbakhsh, S. Proposed Methods for Establishing Load Balancing in Fog Computing: A Survey.
[61] LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399.
[62] Mehri, R., & Somarin, A. M. (2020). Designing an Energy-Efficient Mechanism to Regulate the Transmission Power Rate in Wireless Sensor Networks. World, 9(S1), 189-194.
[63] Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1-15). Berlin, Heidelberg: Springer Berlin Heidelberg.
[64] Mohammad Zadeh, M., & Mirzaei Somarin, A. (2017). Attack Detection in Mobile Ad Hoc.
[65] Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of artificial intelligence research, 11, 169-198.
[66] Zhang, S., Madadkhani, M., Shafieezadeh, M., & Mirzaei, A. (2019). A novel approach to optimize power consumption in orchard WSN: Efficient opportunistic routing. Wireless Personal Communications, 108(3), 1611-1634.
[67] Derakhshandeh, S., & Mikaeilvand, N. (2011). New framework for comparing information security risk assessment methodologies. Australian Journal of Basic and Applied Sciences, 5(9), 160-166.
[68] Mirzaei, A., & Zandiyan, S. (2023). A Novel Approach for Establishing Connectivity in Partitioned Mobile Sensor Networks using Beamforming Techniques. arXiv preprint arXiv:2308.04797.
[69] Allahviranloo, T., & Mikaeilvand, N. (2011). Non zero solutions of the fully fuzzy linear systems. Appl. Comput. Math, 10(2), 271-282.
[70] Awad, M., Khanna, R., Awad, M., & Khanna, R. (2015). Support vector regression. Efficient learning machines: Theories, concepts, and applications for engineers and system designers, 67-80.
[71] Javid, S., & Mirzaei, A. (2021). Highly Reliable Routing In Healthcare Systems Based on Internet of Things
[72] Hahne, F., Huber, W., Gentleman, R., Falcon, S., Gentleman, R., & Carey, V. J. (2008). Unsupervised machine learning. Bioconductor case studies, 137-157.
[73] Nematollahi, M., Ghaffari, A., & Mirzaei, A. (2024). Task and resource allocation in the internet of things based on an improved version of the moth-flame optimization algorithm. Cluster Computing, 27(2), 1775-1797.
[74] Kaur, N. K., Kaur, U., & Singh, D. (2014). K-Medoid clustering algorithm-a review. Int. J. Comput. Appl. Technol, 1(1), 42-45.\
[75] Navarro-Cerdán, J. R., Sánchez-Gomis, M., Pons, P., Gálvez-Settier, S., Valverde, F., Ferrer-Albero, A., ... & Redon, J. (2023). Towards a personalized health care using a divisive hierarchical clustering approach for comorbidity and the prediction of conditioned group risks. Health Informatics Journal, 29(4), 14604582231212494.