استفاده از روش فازی جهت بررسی تغییرات ضایعات و آتروفی مغزی از روی تصاویر ام آر جهت تشخیص سریع بیماری ام اس
محورهای موضوعی : منطق فازی، نظریه مجموعه های فازی، و منطق چند ارزشی
1 -
کلید واژه: تصاویر ام آر , بیماری ام اس , الگوریتم فازی , واترشد کنترل شده,
چکیده مقاله :
بیماري ام اس ، نوعی بیماري است که سیستم عصبی مرکزي را گرفتار میکند و طی آن میلین موجود بر روي رشته هاي عصبی که نقش محافظتی دارند، از بین می رود و لذا هدایت جریان الکتریکی دچار اختلال شده و علائم بیماري ام اس ظاهر می شود. در این بیماری گلبول های سفید که نقش دفاعی در بدن دارند به میلین که حفاظتی برای رشته های عصبی است ، به عنوان یک عامل بیگانه حمله می کنند و با هر بار حمله این گلبول ها به رشته های اعصاب مربوط به یکی از اندام های بدن بیمار که نامشخص بوده ، آن اندام دچار مشکل می شود. بهترین روش تشخیص ام اس بررسی تصاویر MRI مغزی می باشد. بنابراین وجود روشی سریع و دقیق برای ارزیابی تغییرات آتروفی مغز و یا ایجاد و افزایش ضایعات (پلاکها) ناشی از این بیماری ، یک جزء کلیدی درتشخیص و ارزیابی پیشرفت بیماری و اثربخشی دوره های درمانی آن است. تشخیص تغییرات در ضایعات (پلاکها) و آتروفی مغزی ناشی از این بیماری به صورت دستی معمولاً به یک متخصص آموزش دیده نیاز دارد و بسیار کند و دشوار بوده و نتایج آن تا حدودی ذهنی است. از اینرو وجود سیستمی خودکار جهت استخراج و بررسی دقیق این تغییرات امری ضروری است. با اینکه روشهای خودکار بسیاری ارائه شده است ، اما نتایج تقسیم بندی ها به اندازه کافی دقیق نمی باشند. در نتیجه نیاز فراوانی به ایجاد یک روش قوی ، سریع و دقیق برای تشخیص بیماری ام اس و ضایعات مغزی ناشی از آن وجود دارد. در این مقاله از ترکیب دو روش الگوریتم فازی با الگوریتم واترشد کنترل شده ، یک روش سریع با دقت بالا جهت تشخیص بیماری ام اس از روی تصاویر MR مغزی ارائه شده است.
Multiple sclerosis(MS) is a disease that affects the central nervous system, during which the myelin present on the nerve fibers that have a protective role is destroyed, and therefore the conduction of electric current is disturbed and the symptoms of MS disease appear. TIn this disease, the white blood cells that play a defensive role in the body attack the myelin, which is a protection for nerve fibers, as a foreign agent, and each time these blood cells attack the nerve fibers of one of the organs of the patient's body. which is unclear, that organ will have problems. The best way to diagnose MS is to examine brain MRI images. Therefore, the existence of a fast and accurate method to evaluate changes in brain atrophy or the creation and increase of lesions (plaques) caused by this disease is a key component in diagnosing and evaluating the progress of the disease and the effectiveness of its treatment courses. Manual detection of changes in lesions (plaques) and brain atrophy caused by this disease usually requires a trained specialist and is very slow and difficult, and the results are somewhat subjective. Therefore, the existence of an automatic system for extracting and checking these changes is essential. Although many automatic methods have been proposed, the segmentation results are not accurate enough. As a result, there is a great need to develop a strong, fast and accurate method to diagnose MS and brain lesions caused by it. In this article, by combining two fuzzy methods and the controlled watershed algorithm, we propose a fast method with high accuracy to diagnose MS from brain MR images.
1. P. Abhale, A. Lashkare and A. Deshpande, "Early Stage Detection of Multiple Sclerosis using FCNN," 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 2022, pp. 01-04.
2. A. Ahmadi, M. Kashefi, H. Shahrokhi, M.A. Nazari, Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes, Biomed. Signal Process. Control 63 (2021) 102227.
3. Carass, A., Roy, S., Jog, A., Cuzzocreo, J. L., Magrath, E., Gherman, A., Button, J., Nguyen, J., Prados, F., Sudre, C. H., Cardoso, M. J., Cawley, N., Ciccarelli, O., Wheeler-Kingshott, C., Ourselin, S., Catanese, L., Deshpande, H., Maurel, P., Commowick, O., . . . Pham, D. L. (2017). Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. NeuroImage, 148, 77–102. https://doi.org/10.1016/j.neuroimage.2016.12.064.
4. Coll, L., Pareto, D., Carbonell‐Mirabent, P., Cobo‐Calvo, Á., Arrambide, G., Vidal-Jordana, Á., Comabella, M., Castilló, J., Rodríguez‐Acevedo, B., Zabalza, A., Galán, I., Midaglia, L., Nos, C., Salerno, A., Auger, C., Alberich, M., Río, J., Sastre‐Garriga, J., Oliver, A., . . . Tur, C. (2023). Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI. NeuroImage. Clinical, 38, 103376. https://doi.org/10.1016/j.nicl.2023.103376.
5. De Santiago, L., Morla, E. M. S., Ortiz, M., López, E., Usanos, C. A., Alonso-Rodríguez, M. C., Barea, R., Cavaliere-Ballesta, C., Fernández, A., & Boquete, L. (2019). A computer-aided diagnosis of multiple sclerosis based on mfVEP recordings. PloS One, 14(4), e0214662. https://doi.org/10.1371/journal.pone.0214662.
6. Frischer, J. M., Bramow, S., Dal‐Bianco, A., Lucchinetti, C. F., Rauschka, H., Schmidbauer, M., Laursen, H., Sörensen, P. S., & Lassmann, H. (2009). The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain, 132(5), 1175–1189. https://doi.org/10.1093/brain/awp070.
7. García-Lorenzo, D., Prima, S., Arnold, D. L., Collins, D. L., & Barillot, C. (2011). Trimmed-Likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. IEEE Transactions on Medical Imaging, 30(8), 1455–1467. https://doi.org/10.1109/tmi.2011.2114671.
8. Hayama, R., Sarid‐Krebs, L., Richter, R., Fernández, V., Jang, S., & Coupland, G. (2017). PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO Journal, 36(7), 904–918. https://doi.org/10.15252/embj.201693907.
9. Kester, L., & Van Oudenaarden, A. (2018). Single-Cell transcriptomics meets lineage tracing. Cell Stem Cell, 23(2), 166–179. https://doi.org/10.1016/j.stem.2018.04.014.
10. Lenchik, L., Heacock, L., Weaver, A. A., Boutin, R. D., Cook, T. S., Itri, J. N., Filippi, C. G., Gullapalli, R. P., Lee, J., Zagurovskaya, M., Retson, T., Godwin, K., Nicholson, J., & Narayana, P. A. (2019). Automated Segmentation of tissues using CT and MRI: A Systematic review. Academic Radiology, 26(12), 1695–1706. https://doi.org/10.1016/j.acra.2019.07.006.
11. Mancardi, G. (2009). Further data on autologous haemopoietic stem cell transplantation in multiple sclerosis. Lancet Neurology, 8(3), 219–221. https://doi.org/10.1016/s1474-4422(09)70018-3.
12. Pieterse, C. M. J., Pierik, R., & Van Wees, S. (2014). Different shades of JAZ during plant growth and defense. New Phytologist, 204(2), 261–264. https://doi.org/10.1111/nph.13029.
13. Popescu, V. A., Ran, N., Barkhof, F., Chard, D., Wheeler‐Kingshott, C. a. M., & Vrenken, H. (2014). Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. NeuroImage. Clinical, 4, 366–373. https://doi.org/10.1016/j.nicl.2014.01.004.
14. Rondinella, A., Crispino, E., Guarnera, F., Giudice, O., Ortis, A., Russo, G., Di Lorenzo, C., Maimone, D., Pappalardo, F., & Battiato, S. (2023). Boosting multiple sclerosis lesion segmentation through attention mechanism. Computers in Biology and Medicine, 161, 107021. https://doi.org/10.1016/j.compbiomed.2023.107021.
15. Scolding, N., Pasquini, M. C., Reingold, S. C., & Cohen, J. A. (2017). Cell-based therapeutic strategies for multiple sclerosis. Brain, 140(11), 2776–2796. https://doi.org/10.1093/brain/awx154.
16. Snowden, J. A., Akil, M., & Kiely, D. G. (2013). Improving safety in autologous HSCT for systemic sclerosis. Lancet, 381(9872), 1081–1083. https://doi.org/10.1016/s0140-6736(12)62176-x.