تکثیر درونشیشهای موثر ارکید فالانوپسیس رقم Karen Rockwell
محورهای موضوعی : مجله گیاهان زینتیابوالفضل ولی زاده 1 , جلال محمودی 2 , محسن محمدی 3 , بهزاد کاویانی 4 *
1 - گروه فضای سبز، واحد نور، دانشگاه آزاد اسلامی، نور، ایران
2 - گروه فضای سبز، واحد نور، دانشگاه آزاد اسلامی، نور، ایران
3 - گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
4 - گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
کلید واژه: زغال فعال, ارکیداسه, تنظیمکنندههای رشد گیاهی, اجسام شبهپروتوکورم, کشت بافت,
چکیده مقاله :
فالانوپسیس یک جنس ارکید با ارزش اقتصادی بالا در گلکاری جهان است که به عنوان یک گیاه گلدانی و گل شاخهبریده استفاده میشود. تنوع ژنتیکی بالا و عدم یکنواختی رویشی و تکثیر تولیدمثلی، تولید این ارکید را از نظر اقتصادی غیر جالب میکند. تکثیر درونشیشهای تنها روش امکانپذیر در مقیاس بزرگ برای تکثیر فالانوپسیس است. هدف از مطالعه حاضر، بررسی اثر انواع و غلظتهای -ɑنفتالن استیک اسید (NAA) و 6-بنزیلآدنین (BA) (هر دو در غلظتهای ۰، 0/5، ۱، 1/5 و ۳ میلیگرم در لیتر، بهصورت جداگانه یا ترکیبی)، در قالب طرح کاملا تصادفی در تکثیر درونشیشهای فالانوپسیس بود. زغال فعال (AC) (۰، 0/5 و ۱ میلیگرم در لیتر) برای جلوگیری از قهوهایشدن محیط و بافتها به محیط اضافه شد. موراشیگ و اسکوگ (MS)و پروتوکورم بهترتیب بهعنوان محیط کشت و ریزنمونه استفاده شدند. نتایج نشان داد که بیشترین تعداد برگ در محیط غنیشده با ۱ میلیگرم در لیتر NAA همراه با 5/1 میلیگرم در لیتر BA و ۱ میلیگرم در لیتر AC بهدست آمد. تیمار حاوی ۵/۱ میلیگرم در لیتر NAA همراه با 0/5 میلیگرم در لیتر BA و ۱ میلیگرم در لیتر AC بیشترین تعداد ریشه را القا کرد. گیاهچههای کامل تولیدشده در شرایط درونشیشهای به گلدانهای حاوی مخلوطی از LECA (دانههای خاک رس منبسطشده سبک)، پیت ماس، کوکوپیت، خاک زغال چوب، کوکو چیپس و پرلیت منتقل شدند و در شرایط گلخانهای با درصد بقای ۱۰۰ درصد سازگار شدند.
Phalaenopsis is an orchid genus of high economic value in world floriculture used as a pot plant and cut flowers. High genetic variation and the lack of uniformity in vegetative and reproductive propagation make the production of this orchid economically uninteresting. In vitro proliferation is the only large-scale feasible method for Phalaenopsis propagation. The purpose of the present study was to evaluate the effect of types and concentrations of ɑ-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) (both at the concentrations of 0.0, 0.5, 1.0, 1.5 and 3.0 mg l−1, individually or in combination), as a completely randomized design, on the in vitro propagation of Phalaenopsis schilleriana ‘Karen Rockwell’. Activated charcoal (AC; 0.0, 0.5 and 1.0 mg l−1) was added to the media for prevention of the browning of the media and tissues. Murashige and Skoog (MS), and protocorm were used as culture medium and explant, respectively. The results showed that the highest leaf number was obtained in medium enriched with 1.0 mg l−1 NAA together with 1.5 mg l−1 BA along with 1.0 mg l−1 AC. The treatment containing 1.5 mg l−1 NAA together with 0.5 mg l−1 BA along with 1.0 mg l−1 AC induced the highest number of roots. Fully in vitro-produced plantlets were transferred to pots containing a mixture of LECA (Light Expanded Clay Aggregate), peat moss, coco peat, charcoal soil, coco chips and perlite, and acclimatized in greenhouse conditions with 100% survival rate.
Asa, M. and Kaviani, B. 2020. In vitro propagation of orchid Phalaenopsis amabilis (L.) Blume var. Jawa. Iranian Journal of Plant Physiology, 11 (1): 3457–3123. https://doi.org/10.30495/ijpp.2020.672571
Baker, A., Kaviani, B., Nematzadeh, Gh. and Negahdar, N. 2014. Micropropagation of Orchis catasetum – A rare and endangered orchid. Acta Scientiarum Poloronum Hortorum Cultus, 13 (2): 197–205.
Bali Lashaki, K., Naderi, R., Kalantari, S. and Soorni, A. 2014. Micropropagation of Phalaenopsis amabilis cv. ʻCool Breeze’ with using of flower stalk nodes and leaves of sterile obtained from node cultures. International Journal of Farming Allied Science, 3: 823–829. https://doi.org/10.13140/2.1.1226.2086
Bhattacharyya, P., Kumaria, S. and Tandon, P. 2016. High frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. South African Journal of Botany, 104: 232–243. https://doi.org/10.1016/j.sajb.2015.11.013
Cardoso, J.C., Zanello, C.A. and Chen, J.-T. 2020. An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. International Journal of Molecular Science, 21: 985. https://doi.org/10.3390/ijms21030985
Chang, C. and Chang, W.C. 1998. Plant regeneration from callus culture of Cymbidium ensuifolium var. Misericors. Plant Cell Reports, 17: 251–255. https://doi.org/10.1007/s002990050387
Chen, Y., Goodale, U.M., Fan, X.L. and Gao, J.Y. 2015. Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China. Global Ecology Conservation, 3: 367–378. https://doi.org/10.1016/j.gecco.2015.01.002
Chen, J. C., Tong, C. G., Lin, H. Y. and Fang, S. C. 2019. Phalaenopsis LEAFY COTYLEDON1-induced somatic embryonic structures are morphologically distinct from protocorm-like bodies. Frontiers in Plant Science, 10: 1594. https://doi.org/10.3389/fpls.2019.01594
Christenhusz, M.J.M. and Byng, J.W. 2016. The number of known plants species in the world and its anual increase. Phytotaxa, 261: 201–217. https://doi.org/10.11646/phytotaxa.261.3.1
Chugh, S., Guha, S. and Usha Rao, I. 2009. Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae, 122: 507–520. https://doi.org/10.1016/j.scienta.2009.07.016
Cui, H.Y., Murthy, H.N., Moh, S.H., Cui, Y., Lee, E.J. and Paek, K.Y. 2014. Protocorm culture of Dendrobium candidum in balloon type bubble bioreactors. Biochemical Engineering Journal, 88: 26–29. https://doi.org/10.1016/j.bej.2014.04.003
Ferreira, W.D.M., Kerbauy, G.B. and Costa, P.D. 2006. Micropropagation and genetic stability of a Dendrobium hybrid (Orchidaceae). In Vitro Cellular Developmental Biology – Plant, 42: 568–571. https://doi.org/10.1079/IVP2006820
Guo, B., Chen, H., Yin, Y., Wang, W. and Zeng, S. 2024. Tissue culture via protocorm-like bodies in an orchids hybrids Paphiopedilum SCBG Huihuang 90. Plants, 13: 197. https://doi.org/10.3390/plants13020197
Hossain, M.M., Sharma, M., Teixeira da Silva, J.A. and Pathak, P. 2010. Seed germination and tissue culture of Cymbidium giganteum Wall. ex Lindl. Scientia Horticulturae, 123: 479–487. https://doi.org/10.1016/j.scienta.2009.10.009
Iiyama, C.M. and Cardoso, J.C. 2021. Micropropagation of Melaleuca alternifolia by shoot proliferation from apical segments. Trees, 35: 1497–1509. https://doi.org/10.1007/s00468-021-02131-w
Kalimuthu, K., Senthilkumar, R. and Vijayakumar, S. 2007. In vitro micropropagation of orchid, Oncidium sp. (Dancing Dolls). African Journal of Biotechnology, 6: 1171–1174.
Kaviani, B., Negahdar, N., Baker, A. and Mosafer, N. 2017. In vitro micropropagation of an endangered orchid species (Orchis catasetum) through protocorms: The effect of plant growth regulators and iron nano-chelate. Plant Research Journal, 30 (1): 215–225 (In Persian with English Abstract). https://dorl.net/dor/20.1001.1.23832592.1396.30.1.12.1
Khatun, K., Nath, U.K. and Rahman, M.S. 2020. Tissue culture of Phalaenopsis: Present status and future prospects. Journal of Advances Biotechnology and Experimental
Therapeutics, 3 (3): 273–285. https://doi.org/10.5455/jabet.2020.d135
Khoddamzadeh, A.A., Sinniah, U.R., Lynch, P., Kadir, M.A., Kadzimin, S.B. and Mahmood, M. 2011. Cryopreservation of protocorm-like bodies (PLBs) of Phalaenopsis bellina (Rchb. f.) Christenson by encapsulation-dehydration. Plant Cell, Tissue and Organ Culture, 107: 471–481. https://doi.org/10.1007/s11240-011-9997-4
Kiaheirati, H., Hashemabadi, D. and Kaviani, B. 2024. In vitro propagation of the orchid Phalaenopsis circus via organogenesis and somatic embryogenesis using protocorm and thin cell layer explants. Italian Botanist, In Press, https://doi.org/10.3897/italianbotanist.@@.123376
Lee, Y., Hsu, S. and Yeung, E.C. 2013. Orchid protocorm-like bodies are somatic embryos. American Journal of Botany, 100: 2121–2131. https://doi.org/10.3732/ajb.1300193
Lo, K. C., Gansau, J.A., Shih, C. H. and Kao, C. Y. 2022. Shoot development through modified
transverse thin cell layer (tTCL) culture of Phalaenopsis hybrid protocorms. Horticulturae, 8: 206. https://doi.org/10.3390/horticulturae8030206
Luo, J.P., Wawrosch, V. and Kopp, B. 2009. Enhanced micropropagation of Dendrobium huoshanense C.Z. Tang et S.J. Cheng through protocorm-like bodies: The effects of cytokinins, carbohydrate sources and cold pretreatment. Scientia Horticulturae, 123: 258–262. https://doi.org/10.1016/j.scienta.2009.08.008
Mahendran, G. 2014. An efficient in vitro propagation, antioxidant and antimicrobial activities of Aphyllorchis montana (Reichenb.f.). Journal of Ornamental Plants, 4 (4): 1–16. https://doi.org/10.1080/11263504.2015.1008597
Mahendran, G. and Narmatha Bai, V. 2009. Mass propagation of Satyrium nepalense D. Don.—A medicinal orchid via seed culture. Scientia Horticulturae, 119: 203–207. https://doi.org/10.1016/j.scienta.2008.07.029
Martin, K.P. and Madassery, J.P. 2006. Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants and protocorm-like bodies. Scientia Horticulturae, 108: 95–99. https://doi.org/10.1016/j.scienta.2005.10.006
Minamiguchi, J. and Machado Neto, N.B. 2007. Embriogênese somática direta em folhas de Phalaenopsis: Orchidaceae. Colloquium Agrariae, 3: 7–13. https://doi.org/10.5747/ca.2007.v03.n1.a22
Mohammadi, M., Kaviani, B. and Sedaghathoor, Sh. 2019. Micropropagation of two near threatened orchid. Part 2: Phalaenopsis amabilis Blume var. Grandiflora. Advances in Horticultural Science, 33 (4): 485–493. https://doi.org/10.13128/ahsc¬8115
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plant, 15: 473–479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murthy, H.N., Paek, K.Y. and Park, S.Y. 2018. Micropropagation of orchids by using bioreactor technology. In: Lee, Y.I. and Yeung, E.C-T (eds.), Orchid propagation: From Laboratories to Greenhouses—Methods and Protocols, Springer Protocols Handbooks, https://doi.org/10.1007/978-1-4939-7771-09
Nayak, N.R., Rath, S.P. and Patnaik, S. 1997b. In vitro propagation of three epiphytic orchids, Cymbidium aloifolium (L.) Sw., Dendrobium aphyllum (Roxb.) Fisch. and Dendrobium moschatum (Buch.-Ham.) Sw. through thidiazuron-induced high frequency shoot proliferation. Scientia Horticulturae, 71: 243–250. https://doi.org/10.1016/S0304-4238(97)00075-7
Nayak, N.R., Sahoo, S., Patnaik, S. and Rath, S.P. 2002. Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl. (Orchidaceae). Scientia Horticulturae, 94: 107–116. https://doi.org/10.1016/S0304-4238(01)00372-7
Paek, K.Y., Hahn, E.J. and Park, S.Y. 2011. Micropropagation of Phalaenopsis orchids via protocorms and protocorm-like bodies. In: Plant Embryo Culture; Thorpe, T., Yeung, E., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 293–306.
Panwar, D., Ram, K. and Shekhawat, H.N. 2012. In vitro propagation of Eulophia nuda Lindl., an endangered orchid. Scientia Horticulturae, 139: 46–52. https://doi.org/10.1016/j.scienta.2012.01.011
Park, S. Y., Huh, Y.S. and Paek, K.Y. 2018. Common protocols in orchid micropropagation. pp. 179-194. In: Lee, Y. I., & Yeung, E. C. T. (eds.), Orchid propagation: From laboratories to greenhouses—methods and protocols. Springer Protocols Handbooks, https://doi.org/10.1007/978-1-4939-7771-0_8
Park, S.Y., Murthy, H.N. and Paek, K.Y. 2002. Rapid propagation of Phalaenopsis from floral stalk derived leaves. In Vitro Cellular Developmental Biology – Plant, 38: 168–172. https://doi.org/10.1079/IVP2001274
Parthibhan, S., Rao, M.V. and Kumar, T.S. 2015. In vitro regeneration from protocorms in Dendrobium aqueum Lindley–An imperiled orchid. Journal of Genetic Engineering and Biotechnology, 13: 227–233. https://doi.org/10.1016/j.jgeb.2015.07.001
Parvathy, S. 2022. Standardization of tissue culture techniques in Phalaenopsis orchids. Journal of Plant Biochemistry and Physiology, 10 (3): 1000289. https://doi.org/10.35248/2329-9029.22.10.289
Podwyszynska, M. 2003. Rooting of micropropagated shoots. In: Encyclopedia of rose science, Andrew, V.R., Ed.; Elsevier, Amsterdam, The Netherlands, pp. 66–76.
Roy, A.R., Patel, R.S., Patel, V.V., Sajeev, S. and Deka, B.C. 2011. Asymbiotic seed germination, mass propagation and seedling development of Vanda coerulea Griff ex.Lindl. (Blue Vanda): An in vitro protocol for an endangered orchid. Scientia Horticulturae, 128: 325–331. https://doi.org/10.1016/j.scienta.2011.01.023
Shimura, H. and Koda, Y. 2004. Micropropagation of Cypripedium macranthos var. Rebunerse through protocorm-like bodies derived from mature seed. Plant Cell, Tissue and Organ Culture, 78: 273–276. https://doi.org/10.1023/B:TICU.0000025641.49000.b5
Teixeira da Silva, J.A., Hossain, M.M., Sharma, M., Dobránszki, J., Cardoso, J.C. and Zeng, S. 2017. Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal, 3 (3): 110–124. https://dx.doi.org/10/1016/j.hpj.2017.07.009
van Le, B., Hang Phuong, N.T., Anh Hong, L.T. and Tran Thanh van, K. 1999. High frequency shoot regeneration from Rhynchostylis gigantea (Orchidaceae) using thin cell layers. Plant Growth Regulators, 28: 179–185. https://doi.org/10.1023/A:1006210100775
Venturieri, G.A. and Arbieto, E.A.M. 2011. Ex-vitro establishment of Phalaenopsis amabilis seedlings in different substrates. Acta Scientiarum, 33: 495–501. https://doi.org/10.4025/actasciagron.v33i3.3950
Winkelmann, T., Thomas, G. and Priel, W. 2006. Commercial in vitro plant production in Germany in 1985–2004. Plant Cell, Tissue and Organ Culture, 85: 319–327. https://doi.org/10.1007/s11240-006-9125-z
Xu, C.J. and Li, L. 2006. Changes of total phenol content and the activities of PPO, POD and PAL during the browning in Phalaenopsis explant in vitro. Acta Horticulturae Sinica, 33: 671–674.
Yam, T.W. and Arditti, J. 2018. Orchid micropropagation: An overview of approaches
and methodologies. In: Lee YI, Yeung ECT (eds.). Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols, Springer Protocols Handbooks.
Zahara, M. 2017. A review: Micropropagation of Phalaenopsis sp. from leaf and flower stalk explants. Journal Natural, 17 (2): 91–95. https://doi.org/10.24815/jn.v0i0.8130
Zakizadeh, S., Kaviani, B. and Hashemabadi, D. 2019. Micropropagation of two near threatened orchid. Part 1: Catasetum pileatum cv. Alba. Advances in Horticultural Science 33 (4): 475–483. https://doi.org/10.13128/ahsc-8112
Zanello, C.A., Duarte, W.N., Gomes, D.M. and Cardoso, J.C. 2022. Micropropagation from inflorescence nodal segments of Phalaenopsis and acclimatization of plantlets using different substrates. Horticulturae, 8: 340. https://doi.org/10.3390/horticulturae8040340
Zargar Azad, M., Kaviani, B. and Sedaghathoor, Sh. 2023. In vitro propagation of Cephalanthera rubra (L.) Rich., an endangered orchid, using 2,4-D, NAA and BA. Journal of Ornamental Plants, 13: 145–153. https://doi.org/10.24815/jn.v0i0.8130
Zeng, S., Wang, J., Wu, K., Teixeira da Silva, J.A.T., Zhang, J. and Duan, J. 2013. In vitro propagation of Paphiopedilum hangianum Perner & Gruss. Scientia Horticulturae, 151: 147–156. https://doi.org/10.1016/j.scienta.2012.10.032
Zeng, S., Wua, K., Teixeira da Silva, J.A., Zhanga, J., Chena, Z., Xiaa, N. and Duan, J. 2012. Asymbiotic seed germination, seedling development and reintroduction of Paphiopedilum wardii Sumerh., an endangered terrestrial orchid. Scientia Horticulturae, 138: 198–209. https://doi.org/10.1016/j.scienta.2012.02.026
Zhao, P., Wang, W., Feng, S.F., Wu, F., Yang, J.Q. and Wang, W.J. 2007. High-frequency shoot regeneration through transverse thin cell layer culture in Dendrobium candidum Wall ex Lind. Plant Cell, Tissue and Organ Culture, 90: 131–139. https://doi.org/10.1007/s11240-006-9181-4