تاثیر اسید جیبرلیک و نیتروژن بر ویژگیهای خوراکی بنفشه بومی (Viola odorata) و تجاری (Viola tricolor)
محورهای موضوعی : مجله گیاهان زینتیندا نکویار 1 , روح انگیز نادری 2 , داود هاشم آبادی 3 , علی محمدی ترکاشوند 4
1 - گروه علوم باغبانی، دانشکده کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران
3 - گروه علوم باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
4 - دانشیار گروه علوم خاکشناسی، دانشکده کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: محلولپاشی, ظرفیت آنتیاکسیدانی, محرک رشد, فلاونوئید, گل خوراکی,
چکیده مقاله :
پرورش گلهای خوراکی از جمله بنفشه که بومی ایران است راهکاری مناسب جهت افزایش دسترسی بشر به این منابع جدید و با ارزش غذایی است. در این راستا در پژوهش حاضر اثر متقابل اسید جیبرلیک (GA) (0، 150 و 300 میلیگرم در لیتر) و نیتروژن (N) (0، 100 و 200 میلیگرم در لیتر) روی ویژگیهای دو گونه بنفشه (Viola tricolor and Viola odorata) بصورت آزمایش فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار بررسی شد. نتایج نشان داد که کاربرد اسید جیبرلیک و نیتروژن بطور معناداری موجب بهبود ویژگیهای خوراکی در هر دو رقم بنفشه میشود. بطوریکه بیشترین پروتئین، کاروتنوئید، آهن و روی گلبرگ در هر دو گونه بنفشه با کاربرد "GA300 × N200" بدست آمد. مقدار آنتوسیانین گلبرگ در بنفشه معطر با کاربرد "GA0 × N100" (58.32 mg 100g-1 F.W.) و در بنفشه تجاری با کاربرد "GA300 × N100" (66.84 mg 100g-1 F.W.) بیشترین مقدار بود. بنفشه تجاری از نظر سلنیوم غنیتر از بنفشه معطر بود و تیمارهای "GA300 × N200"، "GA300 × N100" و "GA150 × N200" بیشترین غلظت سلنیوم را در بنفشه تجاری بخود اختصاص دادند. در هر دو نوع بنفشه بیشترین فلاونوئید طول موجهای 300 و 330 نانومتر با کاربرد "GA300 × N200" و "GA150 × N200" بدست آمد. اما اثر تیمارها روی فلاونوئید 270 نانومتر معنیدار نبود. ظرفیت آنتیاکسیدانی بنفشه معطر بیشتر از بنفشه تجاری بود و بیشترین ظرفیت آنتی اکسیدانی در بنفشه معطر (84.83 % DPPHsc) و بنفشه تجاری (78.17 % DPPHsc) با کاربرد "GA150 × N200" حاصل شد. با توجه به نتایج حاصل، دو رقم بنفشه مورد مطالعه بهعنوان منابع موثری از پروتئین، عناصر معدنی و ترکیبات آنتیاکسیدانی معرفی میشوند. همچنین کاربرد "GA300 × N200" و "GA150 × N200"جهت بهبود ویژگیهای خوراکی این دو گونه گیاهی پیشنهاد میشود.
The cultivation of edible flowers, e.g. violet, which is native to Iran, is a good way to increase the availability of these new and nutritionally valuable sources to humans. This research employed a factorial experiment based on a randomized complete block design in three replications to explore the interactive effects of gibberellic acid (GA) at three rates of 0, 150, and 300 mg L-1 and nitrogen (N) at three rates of 0, 100, and 200 mg L-1 on the traits of two violet species (Viola tricolor and V. odorata). The results showed that the application of GA and N significantly improved the edible traits of both species so that the highest protein, carotenoid, Fe, and Zn contents in the petals of both species were related to the treatment of ‘GA300 × N200’. The maximum petal anthocyanin content was produced by the treatment of ‘GA0 × N100’ (58.32 mg 100 g-1 FW) in the sweet violets and by the treatment of ‘GA300 × N100’ (66.84 mg 100 g-1 FW) in the commercial violets. The commercial violets were richer in Se than the sweet violets. The highest Se contents in the commercial violets were obtained from the treatments of ‘GA300 × N200’, ‘GA300 × N100’, and ‘GA150 × N200’. In both violet species, the highest flavonoid contents at the wavelengths of 300 and 330 nm were related to the treatments of ‘GA300 × N200’ and ‘GA150 × N200’. However, these treatments were ineffective in flavonoids at 270 nm. The sweet violets had a higher antioxidant capacity than the commercial violets. The highest antioxidant capacity in the sweet violets (84.83 % DPPHsc) and commercial violets (78.17 % DPPHsc) was produced with the application of ‘GA150 × N200’. Based on the results, both species are effective sources of proteins, minerals, and antioxidant compounds. As well, ‘GA300 × N200’ and ‘GA150 × N200’ are recommended for improving the edible traits of these two species.
Abdul Jaleel, C., Gopi, R., Manivannan, P., Sankar, B., Kishorekumar, A. and Panneerselvam, R. 2007 Antioxidant potentials and Ajmalicine accumulation in Catharanthus roseus after treatment with giberellic acid. Colloids Surf B Biointerfaces, 60 (2): 195-200. doi: 10.1016/j.colsurfb.2007.06.009. Epub 2007 Jun 14. PMID: 17643272.
Ahmad, A., Ali, H., Khan, H., Begam, A., Khan, S., Ali, S.S., Ahmad, N., Fazal, H., Ali, M., Hano, C., Ahmad, N. and Abbasi, B.H. 2020. Effect of gibberellic acid on production of biomass, polyphenolics and steviol glycosides in adventitious root cultures of Stevia rebaudiana (Bert.). Plants, 9 (420): 1-14. doi:10.3390/plants9040420
Al-Rumaih, M.M., Rushdy, S.S. and Warsy, A.S. 2003. Effect of cadmium stress in the presence and absence of gibberellic acid on mineral nutrition of cowpea (Vigna unguiculata L.) during ontogenesis. Agricultural Sciences, 15: 141-151.
Amiri, S., Sharafzadeh, S. and Ordookhani, K. 2014. The effect of gibberellic acid and benzyladenine on growth and essential oils of German chamomile. The Indian Journal of Fundamental and Applied Life Sciences, 4 (1): 186-188.
Awad, M.A. and de Jager, A. 2002. Relationship between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Scientia Horticulturae, 92: 265–276.
Babelian Hendijani, K., Mirzakhani, A., Khaghani, S. and Changizi, M. 2021. A study on the propagation of snowflake (Leucojum aestivum L.) as an endangered species by seeds and forced bulbs. Journal of Ornamental Plants, 11(3).
Bartley, G.E. and Scolnik, P.A. 1995. Plant carotenoids: Pigments for photo protection, visual attraction, and human health. Plant Cell, 7 (7): 1027-1038. doi:10.1105/tpc.7.7.1027
Bongue-Bartelsman, M. and Phillips, D.A. 1995. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiology and Biochemistry, 33: 539–546.
Bora, R.K. and Sarma, C.M. 2006. Effect of gibberellic acid and cycocel on growth, yield and protein content of pea. Asian Journal of Plant Sciences, 5 (2): 324-330.
Brand-Williams, W., Cuvelier, M.E. and Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Food Science and Technology, 28 (1): 25-30.
Dordas, C.A. and Sioulas, C. 2007. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rain fed conditions. Industrial Crops and Products, 27: 75-85.
Drihem, K. and Pillbeam, D.J. 2002. Effect of salinity on accumulation of mineral nutrient wheat grown with nitrate nitrogen or mixed ammonium: Nitrate-nitrogen. Journal of Plant Nutrition, 25: 2091-2113.
Ellis, D.R. and Salt, D.L. 2003. Plants, selenium and human health. Current Opinion in Plant Biology, 6: 273–279.
Fageria. N.K. 2009. The use of nutrients in crop plants. CRC Press Taylor and Francis Group, 448 page.
Ferrante, A., Mensuali-Sodi, A. and Serra, G. 2009. Effect of thidiazuron and gibberellic acid on leaf yellowing of cut stock flowers. Central European Journal of Biology, 4 (4): 461-468.
Gamsjaeger, S., Baranska, M., Schulz, H., Heiselmayere, P. and Musso, M. 2011. Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola x wittrockiana) by FT-Raman spectroscopy. Journal of Raman Spectroscopy, 42: 1240–1247.
Golchin, A., Farahmand Mofard, F. and Khadem Moghadam Igdelou, N. 2019. Effect of shadow and different levels of nitrogen on growth and essential oil content of peppermint. Journal of Crop Improvement, 22 (1): 103-117.
González-Barrio, R., Periago, M.J., Luna-Recio, C., Javier, G.F. and Navarro-González, I. 2018. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chemistry, 252: 373-380. doi:https://doi.org/10.1016/j.foodchem.2018.01.102
Gould, K., Davies, K.M. and Winefield, C. 2009. Anthocyanins: Biosynthesis, functions, and applications. Springer-Verlag New York, 336 page.
Ibrahim, M.H., Jaafar, H.Z.J., Rahmat, A. and Abdul Rahman, Z. 2012. Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant labisia Pumila blume (Kacip Fatimah). International Journal of Molecular Sciences, 13: 393-408.
Iqbal, N., Nazar, R., Iqbal, M., Khan, R., Masood, A. and Khan, N.A. 2011. Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Current Science, 100 (7): 998-1007
Karla, Y.P. 1998. Hanbook of reference methods for plant analysis. CRC Press, Washington D.C. USA, 320 p.
Kelley, K.M., Behe, B.K. and Biernbaum, J.A. 2002. Combinations of colors and species of containerized edible flowers: Effect on consumer preferences. HortScience, 37(1): 218-221.
Kelley, K.M., Behe, B.K., Biernbaum, J.A. and Poff, K.L. 2001. Consumer ratings of edible flower quality, mix, and color. HortTechnology, 11(4): 644-647.
Khalaj, M., Edrisi, B. and Amiri, M. 2012. Effect of nitrogen and plant spacing on nutrients uptake,yield and growth of tuberose (Polianthes tuberosa L.). Journal of Ornamental Plants, 2 (1): 45-54.
Khan, N.A., Mir, R., Khan, M., Javid, S. and Samiullah, S. 2002. Effects of gibberellic acid spray on nitrogen yield efficiency of mustard grown with different nitrogen levels. Plant Growth Regulation, 38: 243–247.
Krizek, D.T., Britz, S.J. and Mirecki, R.M. 1998. Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cv. New Red Fire lettuce. Physiology Plantarum, 103 (1): 1-7.
Kucekova, Z., Mlcek, J., Humpolicek, P. and Rop, O. 2013. Edible flowers - antioxidant activity and impact on cell viability. Central European Journal of Biology, 8 (10): 1023-1031.
Kumari, P., Kashyap, U. and Bhargava, B. 2021. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. Journal of Functional Foods, 78 (44): 104375. https://doi.org/10.1016/j.jff.2021.104375
Lieu, P.T., Heiskala, M., Peterson, P.A. and Yang, Y. 2001. The roles of iron in health and disease. Molecular Aspects of Medicine, 22 (1-2): 1-87. doi: 10.1016/s0098-2997(00)00006-6. PMID: 11207374.
Lim, T.K. 2014. Edible medicinal and non-medicinal plants. Springer, Dordrecht, 110 page. https://doi.org/10.1007/978-94-007-1764-0
Liu, D., Liu, W., Zhu, D., Geng, M., Zhou, W. and Yang, T. 2010. Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. Journal of Plant Nutrition and Soil Science, 173: 268–274.
Mardani, H., Razmjoo, J. and Ghaffari, H. 2019. Interactive effect of salinity and urea fertilizer on some physiological characteristics quality and quantity yield of Marsh Mallow. Journal of Plant Process and Function, 8 (32): 223-243.
Mazumdar, B.C. and Majumder, K. 2003. Methods on physcochemical analysis of fruits. University College of Agriculture, Calcutta University, 136-150.
Mengel, K., Kirkby, E.A., Kosegarten, H. and Appel, T. 2001. Nitrogen. In: Mengel, K., Kirkby, E.A., Kosegarten. H. and Appel T. (eds). Principles of plant nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2_7
Miceli, A., Moncada, A., Sabatino, L. and Vetrano, F. 2019. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy, 9 (7): 382. https://doi.org/10.3390/agronomy9070382
Mohammadi, S., Heidari, M., Dahmardeh, M. and Asgheripour, M. 2016. Effects of nitrogen and arsenic on photosynthetic pigments, antioxidant enzyme activities and nutrient elements content in safflower (Carthamus Tinctorius L.). Electronic Journal of Crop Production, 8 (4): 105-120. Https://Www.Sid.Ir/En/Journal/Viewpaper.Aspx?Id=505434
Mousavi, S.H., Naghizade, B., Pourgonabadi, S. and Ghorbani, A. 2016. Protective effect of Viola tricolor and Viola odorata extracts on serum/glucose deprivation-induced neurotoxicity: Role of reactive oxygen species. Avicenna Journal of Phytomedicine, 6 (4): 434-441.
Mozafari, V. and Khaleghi, F. 2016. Effects of gibberellic acid and nitrogen on some physiology parameters and micronutrients concentration in pistachio under salt stress. Water and Soil, 30 (3): 955-967. doi: 10.22067/jsw.v30i3.42977
Mussarat, M., Shair, M., Muhammad, D., Mian, I.A., Khan, S., Adnan, M., Fahad, S.S., Dessoky, E., Sabagh, A., Zia, A., Khan, B., Shahzad, H., Anwar, S., Ilahi, H., Ahmad, M., Bibi, H., Adnan, M. and Khan, F. 2021. Accentuating the role of nitrogen to phosphorus ratio on the growth and yield of wheat crop. Sustainability, 13 (4): 2253. https://doi.org/10.3390/su13042253
Patil, B.S. and Alva, A.K. 1999. Enhancing citrus nutraceuticals through variable nutrient rates. Horticultural Science, 34: 520–520.
Prasad, A.S. 2014. Zinc is and antioxidant and anti-inflammatory agent: Its role in human health. Frontiers in Nutrition, 1: 1-10.
Rezaei, H., Ghorbanli, M. and Peyvandi, M. 2011. Effect of ascorbate and gibberellic acid on some biochemical traits in dragonhead (Dracocephalum moldavica L.) under drought stress conditions. Journal of Crop Production Research (Environmental Stresses in Plant Sciences), 2 (4): 383-400. Https://Www.Sid.Ir/En/Journal/Viewpaper.Aspx?Id=348397
Shah, S.H. 2007. Effects of salt stress on mustard as affected by gibberellic acid application. Journal of Plant physiology, 33: 97-106.
Shahin, M.F.M., Fawzi, M.I.F. and Kandil, E.A. 2010. Influence of foliar application of some nutrient (FertifolMisr) and gibberellic acid on fruit set, yield, fruit quality and leaf composition of ‘Anna’ apple trees grown in sandy soil. Journal of American Science, 6 (12): 202-208.
Staal, M.F., Maatheusis, J.M. and Elzennga, T.M. 1991. Na+/K+ antiport activity in tonoplast vesicles from roots of the salt tolerant plantago maritina and the salt sensitive Plantago media. Plant Physiology, 82: 164-179.
Tuna, A.L., Kaya, C., Dikilitas, M. and Higgs, D. 2008. The combined effects of gibberellic acid and salinity on som antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62: 1-9.
Vojodi Mehrabani, L. 2017. The effects of nitrogen fertilizer sources on yield and some quality attributes of Chrysanthemum morifolium L. Journal of Ornamental Plants, 7 (4): 229-236.
Vukics, V., Kery, A. and Guttman, A. 2008. Analysis of polar antioxidants in heartsease (Viola tricolor L.) and garden pansy (Viola x wittrockiana Gams). Journal of Chromatographic Science, 46: 823-827.
Weiss, d. 2000. Regulation of flower pigmentation and growth: Multiple signaling pathways control anthocyanin synthesis in expanding petals. Plant Physiology, 110: 152-157.
Zahedi, M., Mortazavi, S., Moallemi, N. and Abdossi, V. 2013. Effect of pre-harvest application of gibberellic acid and ethephon on the quality of table grape. Journal of Ornamental Plants, 3(2): 125-131.
Zamir, R., Khalil, S.A., Ahmad, N., Rab, A., Shah, S.T., Jabeen, N., Ali, S. and Ali, M. 2016. The synergistic effects of sucrose and plant growth regulators on morphogenesis and evaluation of antioxidant activities in regenerated tissues of Caralluma tuberculata. Acta Physiologiae Plantarum, 200: 1-9. https://doi.org/10.1007/s11738-016-2218-3