Enhancing the Performance of Perovskite Solar Cells Using a Bilayer Electron Transport Layer Incorporating SWCNT
Mansureh Roohollahi
1
(
Department of Electrical Engineering, Ya.C., Islamic Azad University, Yazd, Iran
)
Mohammad Reza Shayesteh
2
(
Department of Electrical Engineering, Ya.C., Islamic Azad University, Yazd, Iran
)
3
(
Department of Electrical Engineering, Ya.C., Islamic Azad University, Yazd, Iran.
)
Keywords: SWCNT, Bilayer, Electron transport layer, Perovskite solar cell, chirality,
Abstract :
In this paper, a novel perovskite solar cell structure incorporating a single-walled carbon nanotube (SWCNT) layer as a secondary electron transport layer (ETL) between the primary ETL and the top electrode is proposed and simulated. The electrical and optical effects of this additional layer on the perovskite solar cell performance were investigated. Furthermore, the influence of nanotube chirality and the optimization of the SWCNT layer thickness were analyzed to enhance solar cell efficiency. Simulation results show that the incorporation of the SWCNT layer increases the conduction band slope in the perovskite layer, facilitating more efficient electron extraction and reducing recombination in this layer. Optically, the added layer reduces surface reflection and enhances light absorption within the perovskite layer thereby the short circuit current density (Jsc) is increased. As a result, the power conversion efficiency (PCE) of the proposed structure increased by 0.99% compared with the conventional perovskite solar cell, reaching 20.39%.
[1] E. Pulli, E. Rozzi, F. Bella, Transparent photovoltaic technologies: Current trends towards upscaling, Energy Conversion and Management, 219 (2020) 112982. https://doi.org/10.1016/j.enconman.2020.112982
[2] Z. Hu, C. Ran, H. Zhang, L. Chao, Y. Chen, W. Huang, The current status and development trend of perovskite solar cells, Engineering, 21 (2023) 15-19. https://doi.org/10.1016/j.eng.2022.10.012
[3] M. Roohollahi, M.R. Shayesteh, M. Pourahmadi, Improved perovskite solar cell performance using semitransparent CNT layer, Journal of Optoelectronical Nanostructures. 8(1) (2023), 23-46. https://www.sid.ir/paper/1141447/en
[4] P. Zhao, Z. Lin, J. Wang, M. Yue, J. Su, J. Zhang, J. Chang, Y. Hao, Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer, ACS Applied Energy Materials, 2 (2019) 4504-4512. https://pubs.acs.org/doi/abs/10.1021/acsaem.9b00755
[5] K.S. Kim, W. Lee, J.W. Jung, A cascade bilayer electron transport layer toward efficient and stable Ruddlesden‐Popper perovskite solar cells, International Journal of Energy Research, 46 (2022) 8229-8239. https://doi.org/10.1002/er.7725
[6] C. Li, H. Xu, C. Zhi, Z. Wan, Z. Li, TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells, Chinese Physics B, 31 (2022) 118802. https://iopscience.iop.org/article/10.1088/1674-1056/ac8349/meta
[7] Y. Zhou, X. Ren, S. He, Z. Huang, Insight on perovskite solar cells based on double electron transport layer, 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, 2022, pp. 01-03. https://doi.org/10.1109/ICMMT55580.2022.10022712
[8] W. Huang, R. Zhang, X. Xia, P. Steichen, N. Liu, J. Yang, L. Chu, X.a. Li, Room temperature processed double electron transport layers for efficient perovskite solar cells, Nanomaterials, 11 (2021) 329. https://doi.org/10.3390/nano11020329
[9] H.G. Lemos, J.H. Rossato, R.A. Ramos, J.V. Lima, L.J. Affonço, S. Trofimov, J.J. Michel, S.L. Fernandes, B. Naydenov, C.F. Graeff, Electron transport bilayer with cascade energy alignment based on Nb 2 O 5–Ti 3 C 2 MXene/TiO 2 for efficient perovskite solar cells, Journal of Materials Chemistry C, 11 (2023) 3571-3580. https://doi.org/10.1039/D3TC00022B
[10] T. Sewela, R. Ocaya, T. Malevu, Recent insights into the transformative role of Graphene‐based/TiO2 electron transport layers for perovskite solar cells, Energy Science & Engineering, 13 (2025) 4-26. https://doi.org/10.1002/ese3.1878
[11] X. Sun, L. Li, S. Shen, F. Wang, TiO2/SnO2 bilayer electron transport layer for high efficiency perovskite solar cells, Nanomaterials, 13 (2023) 249. https://doi.org/10.3390/nano13020249
[12] D. Du, D. Zhang, H. Liu, W. Shen, Enhanced carrier transport and optical gains in perovskite solar cells based on low-temperature prepared TiO2@SnO2 nanocrystals, Journal of Alloys and Compounds, 983 (2024) 173714. https://doi.org/10.1016/j.jallcom.2024.173714
[13] A. Drygała, Z. Starowicz, K. Gawlińska-Nęcek, M. Karolus, M. Lipiński, P. Jarka, W. Matysiak, E. Tillová, P. Palček, T. Tański, Hybrid mesoporous TiO2/ZnO electron transport layer for efficient perovskite solar cell, Molecules, 28 (2023) 5656. https://doi.org/10.3390/molecules28155656
[14] M. Hadadian, J.-H. Smått, J.-P. Correa-Baena, The role of carbon-based materials in enhancing the stability of perovskite solar cells, Energy & Environmental Science, 13 (2020) 1377-1407. https://doi.org/10.1039/C9EE04030G
[15] J. Abraham, A. Reghunadhan, K. Nimitha, S.C. George, S. Thomas, Carbon Nanotubes for Solar Energy Conversion Applications, Carbon Nanotubes, Apple Academic Press2022, pp. 281-310. https://www.taylorfrancis.com/books/mono/10.1201/9781003277194/carbon-nanotubes?refId=02e3b10e-5d4b-431a-89cb-0105c308a524&context=ubx
[16] M. Roohollahi, M.R. Shayesteh, M. Pourahmadi, Simulation and efficiency improvement of perovskite solar cells using optimized carbon nanotube charge collector and molybdenum trioxide layer, Indian Journal of Physics, 98 (2024) 4949-4959. https://doi.org/10.1007/s12648-024-03257-6
[17] H.H. Madani, M.R. Shayesteh, M. Reza, A carbon nanotube (CNT)-based SiGe thin film solar cell structure, J Optoelectron Nanostruct Winter, 6 (2021). http://dx.doi.org/10.30495/jopn.2021.4541
[18] Y. Gan, G. Qiu, B. Qin, X. Bi, Y. Liu, G. Nie, W. Ning, R. Yang, Numerical analysis of stable (FAPbI3) 0.85 (MAPbBr3) 0.15-based perovskite solar cell with TiO2/ZnO double electron layer, Nanomaterials, 13 (2023) 1313. https://doi.org/10.3390/nano13081313
[19] K. Pourchitsaz, M.R. Shayesteh, Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET), Journal of Optoelectronical Nanostructures, 4 (2019) 51-66. https://www.researchgate.net/publication/333057134_Self-heating_effect_modeling_of_a_carbon_nanotube-based_field-effect_transistor_CNTFET
[20] B. Singh, B. Prasad, D. Kumar, DFT based estimation of CNT parameters and simulation-study of GAA CNTFET for nano scale applications, Materials Research Express, 7 (2020) 015916. https://iopscience.iop.org/article/10.1088/2053-1591/ab6924/meta
[21] A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency, Superlattices and Microstructures, 129 (2019) 240-246. https://doi.org/10.1016/j.spmi.2019.04.007
[22] M.A. Islam, J. Al Rafi, M.A. Uddin, Modeling and formation of a single-walled carbon nanotube (SWCNT) based heterostructure for efficient solar energy: Performance and defect analysis by numerical simulation, AIP Advances, 13 (2023). https://doi.org/10.1063/5.0167228
[23] Thin-film optical filters, 4rd ed., CRC press2010. https://doi.org/10.1201/9781420073034
[24] S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K. Chen, L. Chen, Anti-reflecting and photonic nanostructures, Materials Science and Engineering: R: Reports, 69 (2010) 1-35. https://doi.org/10.1016/j.mser.2010.04.001
[25] F. Ahmad, B.J. Civiletti, P.B. Monk, A. Lakhtakia, Double-layer antireflection coatings for CIGS thin-film solar cells, International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors 2022, SPIE, 2023, pp. 49-51. https://doi.org/10.1117/12.2645881
[26] H. Zhang, X. Liang, Y. Zhang, Y. Chen, N.-G. Park, Unraveling Optical and Electrical Gains of Perovskite Solar Cells with an Antireflective and Energetic Cascade Electron Transport Layer, ACS Applied Materials & Interfaces, 15 (2023) 21152-21161. https://pubs.acs.org/doi/abs/10.1021/acsami.3c02233
[27] S. Elewa, B. Yousif, N.F. Areed, M.E.A. Abo-Elsoud, Harnessing SWCNT absorber based efficient CH3NH3PbI3 perovskite solar cells, Optical and Quantum Electronics, 56 (2024) 1735. https://link.springer.com/article/10.1007/s11082-024-07419-y
[28] T.A. Konig, P.A. Ledin, J. Kerszulis, M.A. Mahmoud, M.A. El-Sayed, J.R. Reynolds, V.V. Tsukruk, Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer, ACS nano, 8 (2014) 6182-6192. https://pubs.acs.org/doi/abs/10.1021/nn501601e
[29] L.J. Phillips, A.M. Rashed, R.E. Treharne, J. Kay, P. Yates, I.Z. Mitrovic, A. Weerakkody, S. Hall, K. Durose, Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process, Data in brief, 5 (2015) 926-928. https://doi.org/10.1016/j.dib.2015.10.026
[30] M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, M. Topič, CH 3 NH 3 PbI 3 perovskite/silicon tandem solar cells: characterization based optical simulations, Optics express, 23 (2015) A263-A278. https://doi.org/10.1364/OE.23.00A263