The impact of the plasmon-exciton interaction on the optical characteristics of the hybrid system NPVO2-QD-NPVO2
Subject Areas : Journal of Optoelectronical NanostructuresAbdolrasul Gharaati 1 * , Ghasem Forozani 2 , Esmail Salari Sardoi 3
1 - Physics Department, Payame Noor University, Tehran, Iran
2 - Department of Physics, Payame Noor University, Tehran, Iran
3 - Department of Physics, Payame Noor University, Tehran, Iran
Keywords:
Abstract :
In this paper, the optical characteristics of a plexitonic system comprising two and one quantum dot (QD) were investigated. Both and QD have unique optical properties on their own and their combination in the hybrid system can lead to interesting phenomena. In this method, when the and QD nanoparticles and their resonance frequencies are close to each other, due to the interaction between plasmons and QD excitons, the optical characteristics of QD change. In this paper, the changes in the optical properties of QD near , a crystalline material that transitions from a semiconducting phase to a metallic phase at a critical temperature, were studied. The results showed that the proximity of to a QD caused an energy shift and an absorption peak which are also used in sensor applications. Moreover, the Förster broadening as well as exciton energy transfer were also investigated. It was revealed that they changed due to the dipole-dipole interaction between plasmon and excitons.
[1] R. Vincent, H. Marinchio, J. J. Sáenz, and R. Carminati. Local control of the excitation of surface plasmon polaritons by near-field magneto-optical Kerr effect. Physical Review B. 90(24) (Dec. 2014) 241412. Available: https://doi.org/10.1103/PhysRevB.90.241412
[2] H. M. Ali, S. Abd-Elnabi, and K. Osman. The intensity of the plasmon–exciton of three spherical metal nanoparticles on the semiconductor quantum dot having three external fields. Plasmonics. 17(4) (Aug. 2022) 1633-1644. Available: https://doi.org/10.1007/s11468-022-01649-0
[3] M. C. Larciprete, D. Ceneda, D. Scirè, M. Mosca, D. Persano Adorno, and M. Centini. Tunable IR perfect absorbers enabled by tungsten doped VO2 thin films. APL Materials. 11(9) (Sep. 2023) 091107. Available: https://doi.org/10.1063/5.0164410
[4] L. Tan, X. Lu, L. Tang, K. Chen, J. Wang, and W. Huang. Flexible composite film utilizing VO 2 self-adaptive photothermal and infrared radiative cooling for continuous energy harvesting. Optics Express. 32(13) (Jun. 2024), 22675-22686. Available: https://doi: 10.1364/OE.523853
[5] A. Bile, D. Ceneda, V. E. Maryam, D. Scirè, and M. C. Larciprete. Room-temperature tuning of mid-infrared optical phonons and plasmons in W-doped VO2 thin films. Optical materials. 154 (Aug. 2024) 115732. Available: https://doi.org/10.1016/j.optmat.2024.115732
[6] M. A. Moghaddam, and N. Daneshfar. Two-and three-photon absorption cross-section investigation in nanometer-sized heterodimer and heterotrimer structures. The European Physical Journal Plus. 139(7) (Jul. 2024) 607. Available: https://doi.org/10.1140/epjp/s13360-024-05411-9
[7] E. Paspalakis, S. Evangelou, and A. F. Terzis. Control of excitonic population inversion in a coupled semiconductor quantum dot–metal nanoparticle system. Physical Review B. 87(23) (Jun. 2013) 235302. Available: https://doi.org/10.1103/PhysRevB.87.235302
[8] R. D. Artuso, and G. W. Bryant. Optical response of strongly coupled quantum dot− metal nanoparticle systems: double peaked fano structure and bistability. Nano letters. 8(7) (Iul. 2008) 2106-2111. Available: https://doi.org/10.1021/nl800921z
[9] Y. Fedutik, V.V. Temnov, O. Schöps, U. Woggon, and M.V Artemyev. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical review letters. 99(13) (Sep. 2007) 136802. Available: https://doi.org/10.1103/PhysRevLett.99.136802
[10] N. Daneshfar, and M. Mohammadbeigi. Theoretical study of the nonlinear optical effects in tunable plasmon–exciton hybrid nanosystems: third-and fifth-order optical processes. The European Physical Journal Plus. 138(5) (May 2023) 404. Available: https://doi.org/10.1140/epjp/s13360-023-04020-2
[11] J. Yi, X. Han, X. Chen, C. Liu, and Y. Luo. The enhanced two-photonexcited fluorescence of CdSe quantum dots on the surface of au island films from surface Plasmon resonance. Thin Solid Films. 521 (Oct. 2012) 112-114. Available: https://doi.org/10.1016/j.tsf.2012.02.041
[12] S. G. Kosionis, E. Paspalakis. Tunneling induced transparency and slow light in an asymmetric double quantum dot molecule—Metal nanoparticle hybrid. Journal of Applied Physics. 134(24) (Dec. 2023) 243107. Available: https://doi.org/10.1063/5.0174151
[13] . V. Bragas. A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Advanced Optical Materials. 1(6) (Jun. 2013) 460-467. Available: https://doi.org/10.1002/adom.201300105
[14] A. Hatef, S. M. Sadeghi, S. Fortin-Deschênes, E. Boulais, and M. Meunier. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems. Optics express. 21(5) (Mar. 2013) 5643-5653. Available: https://doi.org/10.1364/OE.21.005643
[15] H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman. Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano letters. 6(11) (Nov. 2006) 2622-2625. Available: https://doi.org/10.1021/nl061494m
[16] T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano letters. 7(10) (Oct. 2007) 3157-3164. Available: https://doi.org/10.1021/nl071729+
[17] P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, and G. Salamo. Coherent exciton–surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures. Physical review letters. 101(11) (Sep. 2008)116801. Available: https://doi.org/10.1103/PhysRevLett.101.116801
[18] S. Rashidi, S. R. Entezar. And A. Rashidi. Kerr-nonlinearity-assisted NIR nonreciprocal absorption in a VO2-based core–shell composite integrated with 1D nonlinear multilayers. Applied Optics. 60(28) (Oct. 2021) 8651-8658. Available: https://doi: 10.1364/AO.438938
[19] A. Rashidi. Study of temperature distribution in a metallic nanograting based on a Kerr nonlinear material irradiated by a nanosecond pulsed laser. Iranian Journal of Physics Research. 23(4) (Feb. 2024) 621-628. Available: https://doi.org/10.47176/ijpr.23.4.11778
[20] S. A. Imam, K. M. Ishtiak and Q. D. Khosru. Modelling a near perfect temperature tunable multiband VO2 based photonic-plasmonic absorber within visible and near infrared spectra. Results in Engineering. 18 (Jun. 2023)101084. Available: https://doi.org/10.1016/j.rineng.2023.101084
[21] A. Hatef, N. Zamani, W. Johnston. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO2 nanoparticle. Journal of Physics: Condensed Matter. 29(15) (Mar. 2017) 155305. Available: https://doi.org/10.1088/1361-648X/aa61ee
[22] U. K. Chettiar, and N. Engheta. Modeling vanadium dioxide phase transition due to continuous-wave optical signals. Optics Express. 23(1) (Jan. 2015) 445-451. Available: https://doi.org/10.1364/OE.23.000445
[23] T. Kikuzuki, and M. Lippmaa. Characterizing a strain-driven phase transition in VO2. Applied Physics Letters. 96(13) (Mar. 2010) 132107. Available: https://doi.org/10.1063/1.3380599
[24] H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, S. J., and Y. Lim. Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis. Physical review letters. 97(26) (Dec. 2006) 266401. Available: https://doi.org/10.1103/PhysRevLett.97.266401
[25] N. Zamani, H. Nadgaran, and A. Hatef. The effect of quantum correction for the dielectric function on the optical properties of a plasmon–exciton–plasmon hybrid system. The European Physical Journal D. 75 (Jan 2021) 1-7. Available: https://doi.org/10.1140/epjd/s10053-021-00053-3
[26] M. C. Ko, N. C. Kim, C. J. Jang, G. J. Kim, Z. H. Hao and Q. Q Wang. Control of the Optical Response of an Artificial Hybrid Nanosystem Due to the Plasmon-Exciton Plasmon Coupling Effect. arXiv preprint arXiv:1708. (Aug. 2017) 06636 Available: https://doi.org/10.48550/arXiv.1708.06636