Light Absorption Improvement in Si Thin Film Solar Cells Using Combination of Graphene-based nanoparticle and strips-grooves geometry
hasan kanani
1
(
دانشگاه آزاد شبستر
)
Saied Golmohamdi
2
(
School of Engineering Emerging Technologies, University of Tabriz
)
Hassan Rasooli saghai
3
(
Department of electrical engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
)
jaber pouladi
4
(
دانشگاه آزاد اسلامی واحد شبستر،شبستر،ایران
)
Keywords: strips, Dielectric/metal interface, Nanostructured grooves,
Abstract :
Excitation of surface plasmon polariton (SPP) in Sub-wavelength dielectric/metal structures is a key to enhance the light absorption of thin film solar cells (TFSCs). We design a SiO2/Ag nanostructured grooves geometry at the rear-side of a Si-based TFSC to excite SPPs. This geometry scatters light inside absorber layer in many directions resulting in absorption enhancement. In addition, we consider SiO2 corrugated strip geometry at the top of the absorber layer as light trapping technique. The height and width of the SiO2 strips are 60 nm and the height and width of the grooves are 30 nm. We apply this technique in the Si-based TFSC that contains Ag/graphene nanoparticles (NP-TFSC) in absorber layer as localized plasmon resonance elements. The thickness of absorber layer is 800 nm. We simulate this TFSC utilizing FDTD method. Results of simulations reveal a 21.36% absorption enhancement, a 16.39% Jsc increment and a 3.9% in conversion efficiency improvement.
1. Parcham, E. and S.A. Miandoab, Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells. International Journal of Nano Dimension, 2020. 11(1): p. 18-25.
2. Sarkhoush, M., H. Rasooli Saghai, and H. Soofi, Type-I Graphene/Si Quantum Dot Superlattice for Intermediate Band Applications. Journal of Solar Energy Research, 2023. 8(1): p. 1317-1325.
3. Sarkhoush, M., H. Rasooli Saghai, and H. Soofi, Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications. Frontiers of Optoelectronics, 2022. 15(1): p. 42.
4. Nair, S.K. and V. Shinoj. Enhanced absorption in thin film silicon solar cell using plasmonic nanoparticles: An FDTD study. in AIP Conference Proceedings. 2021. AIP Publishing.
5. Tran, Q.N., et al., Influence of gold–silver rough-surface nanoparticles on plasmonic light scattering in organic solar cells. Journal of Nanoscience and Nanotechnology, 2020. 20(1): p. 304-311.
6. Tabrizi, A.A. and A. Pahlavan, Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Optics communications, 2020. 454: p. 124437.
7. Buencuerpo, J., et al., Efficient light-trapping in ultrathin GaAs solar cells using quasi-random photonic crystals. Nano Energy, 2022. 96: p. 107080.
8. Mehrpanah, A., et al., Design of Graphene-Based Core/Shell Nanoparticles to Enhance the Absorption of Thin Film Solar Cells. Plasmonics, 2024.
9. Kanani, H., et al., Design of Graphene-Coated Silver Nanoparticle Based on Numerical Solution to Enhance the Absorption of the Thin-Film Solar Cell. Plasmonics, 2024: p. 1-9.
10. Awal, M., Z. Ahmed, and M.A. Talukder, An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. Journal of Applied Physics, 2015. 117(6).
11. ElKhamisy, K., et al., The effect of different surface plasmon polariton shapes on thin-film solar cell efficiency. Journal of Computational Electronics, 2021. 20: p. 1807-1814.
12. Prabhathan, P. and V.M. Murukeshan, Surface plasmon polariton-coupled waveguide back reflector in thin-film silicon solar cell. Plasmonics, 2016. 11: p. 253-260.
13. Cao, S., et al., Light propagation in flexible thin-film amorphous silicon solar cells with nanotextured metal back reflectors. ACS applied materials & interfaces, 2020. 12(23): p. 26184-26192.
14. Sidharthan, R. and V. Murukeshan, Improved light absorption in thin film solar cell using combination of gap modes and grating back reflector. Thin Solid Films, 2013. 548: p. 581-584.
15. Prokopeva, L.J., et al., Computationally efficient surface conductivity graphene model for active metadevices. IEEE Transactions on Antennas and Propagation, 2020. 68(3): p. 1825-1835.
16. Liu, J.-X., et al., A research of drude-two-critical points model of graphene near the optical frequency. Superlattices and Microstructures, 2020. 148: p. 106692.
17. Figueiredo, J.L., J.P. Bizarro, and H. Terças, Weyl–Wigner description of massless Dirac plasmas: ab initio quantum plasmonics for monolayer graphene. New Journal of Physics, 2022. 24(2): p. 023026.
18. Tharwat, M.M., A. Almalki, and A.M. Mahros, Plasmon-enhanced sunlight harvesting in thin-film solar cell by randomly distributed nanoparticle array. Materials, 2021. 14(6): p. 1380.
19. Heidarzadeh, H., A. Jangjoy, and H. Bahador, Use of coupled Al-Ag bimetallic cylindrical nanoparticles to improve the photocurrent of a thin-film silicon solar cell. Plasmonics, 2022. 17(3): p. 1323-1329.
20. Selmy, A.E., M. Soliman, and N.K. Allam, Refractory plasmonics boost the performance of thin-film solar cells. Emergent Materials, 2018. 1: p. 185-191.
21. Katyani, R. and S. Andalibi Miandoab, Enhance efficiency in flat and nano roughness surface perovskite solar cells with the use of index near zero materials filter. Optical and Quantum Electronics, 2021. 53(9): p. 520.