Thin-film perovskite solar cell incorporating Gaussian and incremental gratings to optimize light absorption
M. Jabbari
1
(
Islamic Azad University, Marvdasht
)
Seyed Mohsen Mohebbi Nodez
2
(
Department of Electrical Engineering, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
)
Ghahraman Solookinejad
3
(
Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
)
Seyedeh Somayeh Mohebbi Nodez
4
(
Department of Electrical Engineering, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
)
Keywords: Thin-Film Solar Cells Perovskite, Gratings, Gaussian, Absorption, Plasmonic, Scattering.,
Abstract :
This paper proposes a Gaussian grating to enhance light absorption in perovskite thin-film solar cells. As gratings are effective structures for trapping light within the active layer of a cell, a two-dimensional Gaussian grating with a rectangular structure is considered for the front surface of the cell. Finite element method results demonstrate that the Gaussian grating significantly increases light absorption in a 0.5 micrometer thick cell within the visible and near-infrared range compared to a cell without a grating and a cell with a conventional or incremental grating. The average absorption of the cell with a Gaussian grating is 85.6%, representing a 90% increase compared to the reference cell. Moreover, the short-circuit current density and efficiency were found to be 28.3 mA/cm² and 34.8%, respectively, indicating increases of 74% and 74.8%, respectively, compared to the reference cell. The proposed cell structure shows promise for improved light-to-electricity conversion.
[1] E.R.W. Mac Queen, M. Liebhaber, J. Niederhausen, M. Mews, C. Gersmann, S. Jackle, K. Lips, Crystalline silicon solar cells with tetracene interlayers: the path to siliconsinglet fission heterojunction devices, Mater. Horiz. 5 (6) (2018) 1065–1075, Available:doi:10.1039/C8MH00853A.
[2] C. Battaglia, A. Cuevas, S.D. Wolf, High-efficiency crystalline silicon solar cells status and perspectives, Energy Environ. Sci. 9 (5) (2016) 1552–1576, Available:doi: https://doi.
org/10.1039/C5EE03380B.
[3] H. Naim, D.K. Shah, A. Bouadi, M.R. Siddiqui, M.S. Akhtar, C.Y. Kim, An in-depth optimization of thickness of base and emitter of ZnO/Si heterojunction-based crystalline silicon solar cell: a simulation method, J. Electron. Mater. 51 (2) (2022)
586–593, Available:doi: https://doi.org/10.1007/s11664-021-09341-5.
[4] S. Cao, D. Yu, Y. Lin, C. Zhang, L. Lu, M. Yin, D. Li, Light propagation in flexible thin-film amorphous silicon solar cells with nanotextured metal back reflectors,ACS Appl. Mater. Interfaces 12 (23) (2020) 6184–26192, Available:doi: https://doi.org/10.1021/acsami.0c05330.
[5] D.L. McGott, C.P. Muzzillo, C.L. Perkins, J.J. Berry, K. Zhu, J.N. Duenow, M.O. Reese, 3D/2D passivation as a secret to success for polycrystalline thin-film solarcells, Joule 5 (5) (2021) 1057–1073, Available:doi: https://doi.org/10.1016/j.joule.2021.03.015.
[6] J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei,A. Romeo, Flexible CIGS, CdTe and a-Si: H based thin film solar cells: a review, Prog. Mater. Sci. 110 (2020) 100619, Available:doi: https://doi.org/10.1016/j.
[7] X. Zhaopeng, H. Huangfu, L. He, J. Wang, D. Yang, J. Guo, H. Wang, Light-trapping properties of the Si inclined nanowire arrays, Opt. Commun. 382 (2017) 332–336, Available:doi:
https://doi.org/10.1016/j.optcom.2016.08.018.
[8] M.A. Elrabiaey, M. Hussein, M.F.O. Hameed, S.S. Obayya, Light absorption enhancement in ultrathin film solar cell with embedded dielectric nanowires, Sci. Rep. 10 (1) (2020) 17534, Available:doi: https://doi.org/10.1038/s41598-020-74453-7.
[9] R. Ren, Z. Zhong, Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector, Opt. Commun. 417 (2018) 110–114, Available:doi: https://doi.org/10.1016/j.optcom.2018.02.051.
[10] Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim, Plasmonic solar cells:from rational design to mechanism overview, Chem. Rev. 116 (24) (2016)14982–15034,Available:doi: https://doi.org/10.1021/acs.chemrev.6b00302.
[11] F. Enrichi, A. Quandt, G.C. Righini, Plasmonic enhanced solar cells: summary of possible strategies and recent results, Renew. Sustain. Energy Rev. 82 (2018) 2433–2439, Available:doi: https://doi.org/10.1016/j.rser.2017.08.094
[12] L. Long, Y. Yang, L. Wang, Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells, Sol. Energy Mater. Sol. Cell 197 (2019) 19–24, Available:doi: https://doi.org/10.1016/j.solmat.2019.04.006
[13] T. Sun, H. Shi, L. Cao, Y. Liu, J. Tu, M. Lu, F. Zhang, Double grating high efficiency nanostructured silicon-based ultra-thin solar cells,ResultsPhys.19(2020)103442,Available:doi:https://doi.org/10.1016/j.rinp.2020.103442.
[14] C. Heine, R.H. Morf, Submicrometer gratings for solar energy applications,Appl.Opt. 34 (14) (1995) 2476–2482, https://doi.org/10.1364/AO.34.002476.
[15] S. Elewa, B. Yousif, M.E.A. Abo-Elsoud, Improving efficiency of perovskite solar cell using optimized front surface nanospheres grating, Appl. Phys. A 127 (11)(2021) 1–14, Available:doi: https://doi.org/10.1007/s00339-021-05019-1
[16] P. Tillmann, B. Bl¨ asi, S. Burger, M. Hammerschmidt, O. Hohn, ¨ C. Becker, K. J¨ ager,Optimizing metal grating back reflectors for III-V-on-silicon multijunction solarcells, Opt. Express 29 (14) (2021) 22517–22532, Available:doi: https://doi.org/10.1364/OE.426761.
[17] R. Chen, Z. Hu, Y. Ye, J. Zhang, Z. Shi, Y. Hua, An anti-reflective 1D rectangle grating on GaAs solar cell using one-step femtosecond laser fabrication, Opt. Lasers Eng. 93 (2017) 109–113, Available:doi: https://doi.org/10.1016/j.optlaseng.2017.01.017.
[18] W. Lan, Y. Wang, J. Singh, F. Zhu, Omnidirectional and broadband light absorption enhancement in 2-D photonic-structured organic solar cells, ACS Photonics 5 (3)(2018) 1144–1150, Available:doi: https://doi.org/10.1021/acsphotonics.7b01573.
[19] A.P. Amalathas, M.M. Alkaisi, Nanostructures for light trapping in thin film solar cells, Micromachines 10 (9) (2019) 619, Available:doi: https://doi.org/10.3390/mi10090619
[20] K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, Nano Lett. 12 (3) (2012) 1616–1619, Available:doi: https://doi.org/10.1021/nl204550q.
[21] H. Zheng, Y. Yu, R. Wu, S. Wu, S. Chen, K. Chen, Period-mismatched sine dualinterface grating for optical absorption in silicon thin-film solar cells, Applied Optics. 59 (33) (202) 10330–10338. Available:doi: https://doi.org/10.1364/AO.408812.
[22] K. Chen, N. Zheng, S. Wu, J. He, Y. Yu, H. Zheng, Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating, Appl. Opt. 60 (33) (2021)10312–10321, Available:doi: https://doi.org/10.1364/AO.443307.
[23] J. Zhang, Z. Yu, Y. Liu, H. Chai, J. Hao, H. Ye, Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells, Opt. Commun. 399 (2017) 62–67, Available:doi: https://doi.org/10.1016/j.optcom.2017.04.062.
[24] Bozzola, M. Liscidini, L.C. Andreani, Broadband light trapping with disordered photonic structures in thin-film silicon solar cells, Prog. Photovolt.: Res. Appl. 22 Available:doi: https://doi.org/10.1002/pip.2385.
[25] Elshorbagy, M. H., Abdel-Hady, K., Kamal, H., & Alda, J. (2017). Broadband anti-reflection coating using dielectric Si3N4 nanostructures. Application to amorphous-Si-H solar cells. Optics Communications, Available:doi: 390, 130-136.
[26] Mohebbi Nodez, S. M., Jabbari, M., & Solookinejad, G. (2023). Absorption enhancement of Perovskite Solar Cells using multiple Gratings. Physica Scripta. Available: doi:10.1088/1402-4896/ace2f6.
[27] Hamid Heidarzadeh (2019), Incident light management in a thin silicon solar cell using a twodimensional grating according a Gaussian distribution. Available: doi:10.1016/j.solener.2019.07.099.
[28] Mojtaba Shahraki, Majid Ghadrdan, Efficiency Improvement of InGaP/SiGe tandem solar cell using Si0.18Ge0.82 graded buffer regions. Journal of Optoelectronical Nanostructures. Available: 10.30495/jopn.2024.33226.1313.
[29] Behrooz Vaseghi; Ghasem Rezaei; Nasim Mohammadi; Shakiba Mardani, Terahertz Resonance Fluorescence of a Spherical Gaussian Quantum Dot. Journal of Optoelectronical Nanostructures. Available: 10.30495/jopn.2024.33360.1316
[30] Mohsen Nasrolahi; Ali farmani; Ashkan Horri; Hossein Hatami, FDTD Analysis of a High-sensitivity refractive index sensing based on Fano resonances in a plasmonic planar split-ring resonators. Journal of OptoelectronicalNanostructures.Available:10.30495/jopn.2024.33499.1321.