Light absorption and short-circuit current density in plasmonic organic solar cells containing liquid crystal and metal nanowires
Subject Areas : Journal of Optoelectronical Nanostructures
Milad Soleimiani
1
,
Mohammad Javad Karimi
2
*
,
Hamed Rahimi
3
1 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
2 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
3 - Department of Physics, Yazd University, Yazd, Iran
Keywords: Solar cell Plasmonic Organic Material Absorption,
Abstract :
In this work, a plasmonic organic solar cell consisting of the organic material P3HT:PCBM, PEDOT:PSS, nematic liquid crystal 5CB, ITO, and metal nanowires was simulated in the wavelength range of 300 to 1200 nm. The substrate and nanowires are made of chrome, copper, and aluminum metals. The refractive indices of the metals were determined from the Drude–Lorentz equation. The values of the geometrical parameters corresponding to the high absorption were calculated. The impact of the layer thicknesses and incident light angle on the short-circuit current density is investigated. The results indicate that the nanowires significantly increase the absorption of the solar cell. Results indicate that the system made of chrome material has a broadband absorption rate of over 90%. Among all the proposed structures, the chrome-based solar cell has a maximum short-circuit current density of approximately . However, this value significantly decreases for incident angles above 40 degrees.
[1] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y.J.N.m. Yang. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mat. 4 (11) (2005) 864-868. Available: https://doi.org/10.1038/nmat1500.
[2] A. Mahmoudloo, Investigation and simulation of recombination models in virtual organic solar cell. Journal of Optoelectronical Nanostructures, 7(4) (2022), 1-12. Available: https://jopn.marvdasht.iau.ir/article_5674.html.
[3] J. Miao, Y. Wang, J. Liu, L.J.C.S.R. Wang. Organoboron molecules and polymers for organic solar cell applications. Chem. Soc. Rev. 51 (1) (2022) 153-187. Available: https://doi.org/10.1039/d1cs00974e.
[4] H.I. Park, S. Lee, J.M. Lee, S.A. Nam, T. Jeon, S.W. Han, S.O. Kim. High Performance Organic Photovoltaics with Plasmonic-Coupled Metal Nanoparticle Clusters. ACS Nano. 8 (10) (2014) 10305-10312. Available: https://doi.org/10.1021/nn503508p.
[5] D.H. Wang, D.Y. Kim, K.W. Choi, J.H. Seo, S.H. Im, J.H. Park, O.O. Park, A.J.J.A.C. Heeger. Enhancement of donor–acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. RSC Adv. 123 (24) (2011) 5633-5637. Available: https://doi.org/10.1038/srep01726.
[6] W. Shen, J. Tang, R. Yang, H. Cong, X. Bao, Y. Wang, X. Wang, Z. Huang, J. Liu, L. Huang, J. Jiao, Q. Xu, W. Chen, L.A. Belfiore. Enhanced efficiency of polymer solar cells by incorporated Ag–SiO2 core–shell nanoparticles in the active layer. RSC Adv. 4 (9) (2014) 4379-4386. Available: https://doi.org/10.1039/C3RA45495A.
[7] Z. Yuan, Y. Yang, Z. Wu, S. Bai, W. Xu, T. Song, X. Gao, F. Gao, B. Sun. Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells. ACS Appl Mater Interfaces. 8 (50) (2016) 34446-34454. Available: https://doi.org/10.1021/acsami.6b12637.
[8] M.J. Maleki, M. Soroosh. A low-loss subwavelength plasmonic waveguide for surface plasmon polariton transmission in optical circuits. Opt. Quantum Electron. 55 (14) (2023) 1266. Available: https://doi.org/10.1007/s11082-023-05603-0.
[9] K. N’Konou, L. Peres, P. Torchio. Optical Absorption Modeling of Plasmonic Organic Solar Cells Embedding Silica-Coated Silver Nanospheres. Plasmonics. 13 (1) (2018) 297-303. Available: https://doi.org/10.1007/s11468-017-0514-4.
[10] D.T. Gangadharan, Z. Xu, Y. Liu, R. Izquierdo, D. Ma. Recent advancements in plasmon-enhanced promising third-generation solar cells. J. Nanophotonics. 6 (1) (2017) 153-175. Available: https://doi.org/10.1515/nanoph-2016-0111.
[11] S.-W. Baek, J. Noh, C.-H. Lee, B. Kim, M.-K. Seo, J.-Y. Lee. Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. RSC Adv. 3 (1) (2013) 1726. Available: https://doi.org/10.1038/srep01726.
[12] A. Ng, W.K. Yiu, Y. Foo, Q. Shen, A. Bejaoui, Y. Zhao, H.C. Gokkaya, A.B. Djurišić, J.A. Zapien, W.K. Chan, C. Surya. Enhanced Performance of PTB7:PC71BM Solar Cells via Different Morphologies of Gold Nanoparticles. ACS Appl Mater Interfaces. 6 (23) (2014) 20676-20684. Available: https://doi.org/10.1021/am504250w.
[13] H. Wang, Y. Ding, W. Chen, Y. Liu, D. Tang, G. Cui, W. Li, J. Shi, Z. Bo. Broadband Absorption Enhancement in Polymer Solar Cells Using Highly Efficient Plasmonic Heterostructured Nanocrystals. ACS Appl Mater Interfaces. 10 (37) (2018) 30919-30924. Available: https://doi.org/10.1021/acsami.8b09101.
[14] R. Xie, Z. Li, E. Gu, S. Guo, Y. Yuan. Absorption Efficiency Enhancement of Organic Solar Cells by Double Grating Structure. Photonics Nanostruct. 38 (2020) 100763. Available: https://doi.org/10.1016/j.photonics.2019.100763.
[15] A. Elrashidi, K. Elleithy. High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles. Polymers. 14 (5) (2022) 862. Available: https://doi.org/10.3390/polym14050862.
[16] G. Si, Y. Zhao, E.S.P. Leong, Y.J. Liu. Liquid-Crystal-Enabled Active Plasmonics: A Review. J. Mater. 7 (2) (2014) 1296-1317. Available: https://doi.org/10.3390/ma7021296.
[17] Y. Sun, L. Jiang, L. Zhong, Y. Jiang, X. Chen. Towards active plasmonic response devices. Nano Res. 8 (2) (2015) 406-417. Available: https://doi.org/10.1007/s12274-014-0682-x.
[18] N. Yilmaz Canli, S. Günes, A. Pivrikas, A. Fuchsbauer, D. Sinwel, N.S. Sariciftci, Ö. Yasa, B. Bilgin-Eran. Chiral (S)-5-octyloxy-2-[{4-(2-methylbuthoxy)-phenylimino}-methyl]-phenol liquid crystalline compound as additive into polymer solar cells. Sol. Energy Mater. 94 (6) (2010) 1089-1099. Available: https://doi.org/10.1016/j.solmat.2010.02.030.
[19] S. Jeong, Y. Kwon, B.D. Choi, G. Kwak, Y.S.J.M.c. Han, physics. Effects of nematic liquid crystal additives on the performance of polymer solar cells. Macromol. Chem. Phys. 211 (23) (2010) 2474-2479. Available: https://doi.org/10.1002/macp.201000379.
[20] K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J.M. White, R.M. Williamson, J. Subbiah, J. Ouyang, A.B. Holmes, W.W.H. Wong, D.J. Jones. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6 (1) (2015) 6013. Available: https://doi.org/10.1038/ncomms7013.
[21] H. Rahimi, M.J. Karimi. Optical absorption of a metal–liquid crystal–metal plasmonic filter. Opt. Commun. 485 (2021) 126735. Available: https://doi.org/10.1016/j.optcom.2020.126735.
[22] H. Rahimi, M.J. Karimi, S. Ghajarpour-Nobandegani. Chromium nanostructures for enhancing light trapping in a thin-film solar cell. Opt. Mater. 121 (2021) 111548. Available: https://doi.org/10.1016/j.optmat.2021.111548.
[23] S.N. Jafari, A. Ghadimi, S. Rouhi. Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures. 5 (4) (2020) 87-110. Available: https://jopn.marvdasht.iau.ir/article_4505.html.
[24] A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37 (22) (1998) 5271-5283. Available: https://doi.org/10.1364/AO.37.005271.
[25] A. Abdolahzadeh Ziabari, S. Royanian, R. Yousefi, S. Ghoreishi. Performance improvement of ultrathin CIGS solar cells using Al plasmonic nanoparticles: The effect of the position of nanoparticles. Journal of Optoelectronical Nanostructures. 5 (4) (2020) 17-32. Available: https://jopn.marvdasht.iau.ir/article_4506.html
[26] S. Magdi, D. Ji, Q. Gan, M.A. Swillam. Broadband absorption enhancement in organic solar cells using refractory plasmonic ceramics. J. Photonics Energy. 11 (1) (2017) 016001.
[27] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499 (7458) (2013) 316-319. Available: https://doi.org/10.1038/nature12340.
[28] M. Liu, M.B. Johnston, H.J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501 (7467) (2013) 395-398. Available: https://doi.org/10.1038/nature12509.
[29] J. Oh, H.-C. Yuan, H.M. Branz. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7 (11) (2012) 743-748. Available: https://doi.org/10.1038/nnano.2012.166.
[30] F. Zhang, X. Han, S.-t. Lee, B.J.J.o.M.C. Sun. Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells. J. Mater. Chem. 22 (12) (2012) 5362-5368. Available: https://doi.org/10.1039/C2JM15674A.
[31] Y. Zhu, T. Song, F. Zhang, S.-T. Lee, B. Sun. Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential. Appl. Phys. Lett. 102 (11) (2013) Available: https://doi.org/10.1063/1.4796112.
[32] A. Mahmoudloo. Investigation and Simulation of Recombination Models in Virtual Organic Solar Cell. Journal of Optoelectronical Nanostructures. 7 (4) (2022) 1-12.
[33] K.A. Emery. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 91 (26) (2007) Available: https://doi.org/10.1063/1.2817240.
[34] L.M. Chen, Z. Hong, G. Li, Y. Yang. Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Adv. Mater. 21 (14-15) (2009) 1434-1449. Available: https://doi.org/10.1002/adma.200802854.
[35] D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill, Handbook of liquid crystals, volume 2A: low molecular weight liquid crystals I: calamitic liquid crystals, John Wiley & Sons2011.
[36] M. Dridi, A. Vial. Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance. Opt. Lett. 34 (17) (2009) 2652-2654. Available: https://doi.org/10.1364/OL.34.002652.
[37] H. Wang, A. Vial. Tunability of LSPR using gold nano-particles embedded in a liquid crystal cell. J. Quant. Spectrosc. Radiat. Transf. 146 (2014) 492-498. Available: https://doi.org/10.1016/j.jqsrt.2014.02.008.
[38] N.F.F. Areed, M. El-Baz, A.M. Heikal, S.S.A. Obayya. Intensity modulation lens on the basis of nano-scale golden rods and liquid crystal layer. Opt. Quantum Electron. 50 (6) (2018) 240. Available: https://doi.org/10.1007/s11082-018-1501-5.
[39] Available: www.refractiveindex.info.
[40] S. Kirchmeyer, K. Reuter. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15 (21) (2005) 2077-2088. Available: https://doi.org/10.1039/B417803N.
[41] A.M. Nardes, M. Kemerink, R.A.J. Janssen, J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, A.J.J.M. van Breemen, M.M. de Kok. Microscopic Understanding of the Anisotropic Conductivity of PEDOT:PSS Thin Films. Adv. Mater. 19 (9) (2007) 1196-1200. Available: https://doi.org/10.1002/adma.200602575.
[42] B. Boroomand Nasab, A. Kosarian, N. Alaei Sheini. Effect Of Zinc Oxide RF Sputtering Pressure on the Structural and Optical Properties of ZnO/PEDOT: PSS Inorganic/Organic Heterojunction. Journal of Optoelectronical Nanostructures. 4 (3) (2019) 33-46. Available: https://jopn.marvdasht.iau.ir/article_3618.html.
[43] Y.Y. Kee, S.S. Tan, T.K. Yong, C.H. Nee, S.S. Yap, T.Y. Tou, G. Sáfrán, Z.E. Horváth, J.P. Moscatello, Y.K. Yap. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices. J. Nanotechnol. 23 (2) (2012) 025706. Available: https://doi.org/10.1088/0957-4484/23/2/025706.
[44] F. Assous, P. Degond, E. Heintze, P.A. Raviart, J. Segre. On a Finite-Element Method for Solving the Three-Dimensional Maxwell Equations. J. Comput. Phys. 109 (2) (1993) 222-237. Available: https://doi.org/10.1006/jcph.1993.1214.
[45] M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya. Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quantum Electron. 47 (6) (2015) 1487-1494. Available: https://doi.org/10.1007/s11082-015-0127-0.
[46] G. Singh, S.S. Verma. Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles. Energy Sources A: Recovery Util. Environ. Eff. 40 (2) (2018) 155-162. Available: https://doi.org/10.1080/15567036.2017.1407840.
[47] F.L. Teixeira. Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media. IEEE Trans. Antennas Propag. 56 (8) (2008) 2150-2166. Available: https://doi.org/10.1109/TAP.2008.926767.
[48] M. Rezvani, M. Fathi Sepahvand. Simulation of surface plasmon excitation in a plasmonic nano-wire using surface integral equations. Journal of Optoelectronical Nanostructures. 1 (1) (2016) 51-64. Avalable: https://jopn.marvdasht.iau.ir/article_1815.html.
[49] B. Petter Jelle, C. Breivik, H. Drolsum Røkenes. Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Sol. Energy Mater. 100 (2012) 69-96. Available: https://doi.org/10.1016/j.solmat.2011.12.016.
[50] L. Beilina, V. Ruas. Explicit P1 Finite Element Solution of the Maxwell-Wave Equation Coupling Problem with Absorbing. b. c. Mathematics. 12 (2024) 936. Available: https://doi.org/10.3390/math12070936.
[51] Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S.D. Wolf, C. Ballif. Current Losses at the Front of Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2 (1) (2012) 7-15. Available: https://doi.org/10.1109/JPHOTOV.2011.2174967.
[52] J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley & Sons2006.
[53] G. Zheng, L. Xu, M. Lai, Y. Chen, Y. Liu, X. Li. Enhancement of optical absorption in amorphous silicon thin film solar cells with periodical nanorods to increase optical path length. Opt. Commun. 285 (10) (2012) 2755-2759. Available: https://doi.org/10.1016/j.optcom.2012.01.084.
[54] M. Chen, Y. Cui, Y. Zhang, T. Ji, Y. Hao, F.R. Zhu. Effect of spherical metallic nanoparticles in active layer on absorption enhancement in organic solar cells. J. Photonics Energy. 7 (4) (2017) 045501.
[55] N. Sahraei, S. Venkataraj, A.G. Aberle, I.M. Peters. Investigation of the Optical Absorption of a-Si:H Solar Cells on Micro- and Nano-Textured Surfaces. Energy Procedia. 33 (2013) 166-172. Available: https://doi.org/10.1016/j.egypro.2013.05.054.
[56] D.V. Prashant, D.P. Samajdar, D. Sharma. Optical simulation and geometrical optimization of P3HT/GaAs nanowire hybrid solar cells for maximal photocurrent generation via enhanced light absorption. J. Sol. Energy. 194 (2019) 848-855. Available: https://doi.org/10.1016/j.solener.2019.11.027.
[57] T. Ahmed, M. K. Das. Enhanced Efficiency in Thin Film Solar Cells: Optimized Design With Front Nanotextured and Rear Nanowire-Based Light Trapping Structur. IEEE Transactions on Nanotechnology. 23 (2024) 456-466. Available https://doi: 10.1109/TNANO.2024.3408253.