Design of a Three-Element Apochromatic Lens to Correct Axial Chromatic Aberration at UVA Wavelength Band
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Physics Department, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
Keywords: Apochromat, Spot diagram, secondary spectrum, Airy Radias,
Abstract :
Abstract:
Apochromat is usually designed for color correction in the range of the visible spectrum. But to correct the chromatic aberration of optical systems outside the visible spectrum, apochromatic lens in the same spectral band should be used. In this work, firstly, a three-element apochromatic lens in the UVA spectral region is pre-designed and optimized by spherical lenses with suitable glasses. The primary spherical aberration of this apochromat is almost zero and its tertiary spectrum has a small value of 2.558 microns. Nevertheless, the spherical aberration of higher orders causes the RMS radius in the spot diagram to be several times larger than the Airy radius. Then, by selecting aspheric surfaces and re-optimizing the system, a spherical aberration-free apochromatic with a small tertiary spectrum is designed. In this last design, the RMS radius is smaller than the Airy radius, so almost all points are located inside the Airy disk. This lens can be used to correct chromatic aberration in UVA imaging spectrometers and cameras.
[1] J. M. Geary, Introduction to lens design: with practical ZEMAX examples, Richmond, VA, USA: Willmann-Bell, 2002.
[2] R. Kingslake, R. B. Johnson, Lens design fundamentals, academic press, 2010.
Available: https://www.sciencedirect.com/book/9780123743015/lens-design-fundamentals
[3] J. Laatikainen, Design of Apochromatic Lenses, MS thesis, Itä-Suomen yliopisto, 2020.
Available: https://erepo.uef.fi/bitstream/handle/123456789/22245/urn_nbn_fi_uef-20200556.pdf
[4] A. Sample, B. Zhao, C. Wu, S. Qian, X. Shi, A. Aplin,Y. He, The autophagy receptor adaptor p62 is up‐regulated by UVA radiation in melanocytes and in melanoma cell,. Photochemistry and photobiology, 94(3) (2018, July) 432- 437.
Availabe: https://doi.org/10.1111/php.12809
[5] L. R. Sklar, F. Almutawa, H. W. Lim, I. Hamzavi, Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review, Photochemical & Photobiological Sciences, 12(1) (2012, December) 54-64.
Available: https://link.springer.com/article/10.1039/c2pp25152c
[6]https://www.photonics.com/Articles/Ultraviolet_Reflectance_Imaging_Applications/a32169
[7] T. C. Wilkes, A. J. McGonigle, T. D. Pering, A. J. Taggart, B. S. White, R. G. Bryant, J. R, Willmott, Ultraviolet imaging with low-cost smartphone sensors: development and application of a Raspberry Pi-based UV camera, Sensors, 16(10) (2016, October)1649.
Availabe: https://doi.org/10.3390/s16101649
[8] T. C. Krauss, S. C. Warlen, The forensic science use of reflective ultraviolet photography, Journal of Forensic Science, 30(1) (1985, January) 262-268.
Available: https://www.astm.org/jfs10991j.html
[9] C. Tetley, S. Young, Digital infrared and ultraviolet imaging Part 1: infrared, Journal of Visual Communication in Medicine, 30(4) (2007, July) 162-171.
Availabe: https://doi.org/10.1080/17453050701767106
[10] Z. Chen, P. Wang, B. Yu, Research of UV detection system based on embedded computer, In: 2008 World Automation Congress. IEEE, 2008, p. 1- 4.
Available: https://ieeexplore.ieee.org/abstract/document/4699210
[11] J. Fulton, E. James, Utilizing the ultraviolet (UV detect) camera to enhance the appearance of photodamage and other skin conditions, Dermatologic Surgery, 23(3) (1997, March) 163-169.
Available: https://doi.org/10.1111/j.1524-4725.1997.tb00013.x
[12] A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer, Journal of Geophysical Research: Atmospheres, 99(D12) (1994, December) 25599-25605.
Available: https://doi.org/10.1029/94JD02187
[13] T. Mori, M. Burton, The SO2 camera: A simple, fast and cheap method for ground‐based imaging of SO2 in volcanic plumes, Geophysical research letters, 33(24) (2006, December) 1-5.
Available: https://doi.org/10.1029/2006GL027916
[14] T. P. Stecher, R. H. Cornett, M. R. Greason, W. B. Landsman, J. K. Hill, R. S. Hill, ... & W. H.Waller, The ultraviolet imaging telescope: instrument and data characteristics, Publications of the Astronomical Society of the Pacific, 109(735) (1997, May) 584-599.
Available: https://www.jstor.org/stable/40680932
[15] S. F. Cheak, Detecting near-UV and near-IR wavelengths with the FOVEON image sensor, Diss. Monterey California. Naval Postgraduate School, 2004.
Available: https://apps.dtic.mil/sti/citations/ADA429699
[17] N. Kaza, A. Ojaghi, F. E. Robles, Ultraviolet hyperspectral microscopy using chromatic-aberration-based iterative phase recovery, Optics letters, 45(10) (2020, May) 2708-2711.
Available: https://doi.org/10.1364/OL.392634
[18] W. J. Smith, Modern optical engineering: the design of optical systems, 4th Ed., McGraw-Hill Education, 2008.
Available:https://www.amazon.com/Modern-Optical-Engineering-4th-Ed/dp/0071476873
[19] I. H. Malitson, A redetermination of some optical properties of calcium fluoride, Applied Optics, 2(11) (1963, November) 1103-1107.
Available: https://doi.org/10.1364/AO.2.001103
[20] J. H. Burnett, Z. H. Levine, E. L. Shirley, Intrinsic birefringence in calcium fluoride and barium fluoride, Physical Review B, 64(24), (2001, November).
Available: https://doi.org/10.1103/PhysRevB.64.241102
[21] M .Dehghani, M. Hatami, A. Gharaati, Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton, Journal of Optoelectronical Nanostructures, 6(4) (2021) .
Available:10.30495/jopn.2022.28937.1236
[22] V. Fallahi, and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices, Journal of Optoelectronical Nanostructures, 4(2) (2019) 53-68.
[23] H. Golamzadeh, R. Hosseini, H. Veladi, & H. Rahimi, Amplification of Output Voltage by Using Silicon Based Solar Cells, Piezoelectric and Thermoelectric Conversion Transducers: A Triple Energy Harvester, Journal of Optoelectronical Nanostructures, 8(2 )(2023) 32-50.
Available: 10.30495/JOPN.2023.31481.1280
[24] J. Noroz haghi, P. Aberoomand Azar, M. Saber Tehrani & S. Waqif Husain, Preparation of Ionic Liquid-Silica Nanoparticles Nanocomposite Film Coated Porous Copper Wire for SolidPhase Microextraction of Pesticides from Tomato Samples, Journal of Optoelectronical Nanostructures, 8(1)(2023) 58-83.
Available: 10.30495/JOPN.2023.30875.1269
[25] Parva, S., & M. HATAMI, Nonlinear Energy Exchange Between Solitons In Modes Of A Silica Few-Mode Fiber, Journal of Optoelectronical Nanostructures, 7(2) (2022) 63-78.
Available: 10.30495/JOPN.2022.29968.1259
[26] N. Kristianpoller, I. KATZ, Optical Properties of Various Types of Fused Silica, JOSA, 60(3) (1970, March) 424-425.
Available: https://doi.org/10.1364/JOSA.60.000424
[28] J. Sasián, Introduction to lens design, Cambridge University Press. (2019).
Available: https://doi.org/10.1017/9781108625388
[29] R. Zemax, Zemax 13, Optical Design Program, User’s Manual. (2014).
Available: https://www.scribd.com/document/341465746/Zemax-Manual-pdf#
[30] J. Liu, J. Tan, T. Wilson, C. Zhong, Rigorous theory on elliptical mirror focusing for point scanning microscopy, Optics Express 20(6) (2012, March) 6175-6184.
Available: https://doi.org/10.1364/OE.20.006175