Quality Assessment of Variable Reflectivity Laser Mirrors with High Laser –Induced Damage Threshold and Structural Analysis
Subject Areas :
Journal of Optoelectronical Nanostructures
Hasan Ebadian
1
,
Omid Sheikhi
2
,
Mahdi Mardiha
3
1 - Faculty of Applied Sciences. Malek- Ashtar University of Technology. Iran
2 - Faculty of Applied Sciences. Malek- Ashtar University of Technology. Iran
3 - Faculty of Applied Sciences. Malek- Ashtar University of Technology. Iran
Received: 2023-08-23
Accepted : 2024-03-05
Published : 2024-02-01
Keywords:
FESEM,
Variable Reflectivity Mirrors (VRM),
PVD,
Laser induced damage threshold (LIDT),
Abstract :
Abstract:
We report the results of an experimental study on the fabrication of a multilayer variable reflectivity laser mirror and the morphological analysis of optical thin film layers. In a design procedure, a series of variable reflectivity laser mirrors are fabricated and characterized with different methods. In this research, based on pulsed solid-state Nd:YAG lasers at 1064 nm, two types of variable reflectivity laser mirrors with (HfO2/SiO2) and (ZrO2/SiO2) materials are fabricated by electron beam evaporation method. The central reflectivity of R0 =30 and 35 % for two super Gaussian orders of n=3 and 4 is manufactured and qualified by ellipsometry and laser beam scan methods. The Laser-induced damage threshold experiments demonstrated that, the VRMs with multilayers of HfO2/SiO2, have a higher Laser-induced damage threshold than ZrO2/SiO2, which was 10 J/cm2 and 7 J/cm2, correspondingly. Also, in a novel and exact FESEM approach, the morphological structure of the VRM thin layers was monitored which gives a deeper insight into the layer structure and helped us to calibrate the PVD device for shaped VRM.
References:
Morin and M. Poirier, Graded reflectivity mirror unstable laser resonator design, Optical and Quantum Electronics., 29 (8). (1997) 819-866. Available doi:10.1117/12.308125 .
Zizzo, C. Arnone, C. Call and S. Sciortino, Fabrication and characterization of tuned Gaussian mirrors for the visible and the near infrared. Opt. Lett., 13(5), (1988) 342-344, Available doi:10.1364/ol.13.000342.
Emiliani et al, Optical coatings with variable reflectance for laser mirrors, App.optics., 28 (1989) 2832-7, Available doi:10.1364/AO.28.002832
Nikolov et al, High-power Nd: YAG laser with variable reflectivity mirrors, International Society for Optics and Photonics., 4397 (2001) 49-53, Available doi:10.1117/12.425158.
Mahdieh M. Shirmahi and M. Lafooti, Investigation of variable reflecting mirrors effects in beam quality of unstable optical resonators, International Society for Optics and Photonic., 6346(2007) 63461-5, Available doi:10.1117/12.738863.
Generalov et al, High-power CO2 laser with VRM unstable resonator: beam quality control and characterization, International Society for Optics and Photonics., 4165 (2000) 210, Available: https://www.researchgate.net/publication/253568985_High-power_CO2_laser_with_VRM_unstable_resonator_beam_quality_control_and_characterization
Duplain et al., Graded-reflectance mirrors for beam quality control in laser resonators App. Optics., 32 (1993) 1145-1153, Available doi:10.1364/OAM.1991.TuDD4.
Eghbalifar H. Izadneshan G. Solookinejad, L. Separdar, The influence of substrate preparation conditions on the Raman spectra of In2S3 thin films prepared by physical vapor deposition, JOPN., 7 ( 2022) 51-62, Available doi: 10.30495/JOPN.2022.29862.1256
Liu, Y. Zheng, F. Pan, Z. Wang, J .Wang, Q. Xu, Effect of 1064 nm laser conditioning on damage morphology change process on HfO2/SiO2 reflective film, Infrared and Laser Engineering., 46 (2017)6060031-7, Availabledoi:10.3788/irla201746.0606003 .
Dai, Y. Chen, J. Lu, Z. Shen, X. Ni, Chin. Analysis of laser induced thermal mechanical relationship of HfO2/SiO2 high reflective optical thin film at 1064 nm, Opt. Lett., 7(2009)601-604, Available: https://opg.optica.org/col/abstract.cfm?uri=col-7-7-601.
R. Kozlovski, Large area laser conditioning of dielectiic thin film mirrors Proc. SPIE., 1438 (1990)143811-17, Available doi:10.1117/12.2294446.
Zhang, S. Fan, Y. Zhao, W.Gao, J. Shao, R. Fan, Y. Wang, Z. Fan, High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation, Applied Surface Science., 243, (2005)232-237, Available doi:10.1016/j.apsusc.2004.09.083.
Reicher, M. Navarro, R. Sydenstricker, J. Oberling, M. Marquez, J .Villafuert, A Ogloza , J. Pentony, P .Langston, D. O'Conner, D. Marrs, Damage thresholds of HfO2/SiO2 and ZrO2/SiO2 high reflectors at 1.064 microns deposited by reactive DC magnetron sputtering, Proc. SPIE., 5647 (2005) 26-32, Available doi:10.1117/12.583022 .
Alvis, M. Giulio, S. Di Marrone, G Perrone, M. R. Protopapa, M. L. Valentini, and L. Vasanelli, HfO2 films with high laser damage threshold thin solid films ,Thin Solid Films., 358 (2000)250-258, Available doi:10.1016/S0040-6090(99)00690-2.
Smalakys, E. Drobužaite, B. Momgaudis, R. Grigutis, and A.Melninkaitis, Quantitative investigation of laser induced damage fatigue in Hf2o and Zro2, Optics Express., 28 (2020)25335-45, Available: doi:10.1364/OE.397812 .
Jena, R. Bahadur. Tokas, K. Divakar. Rao, S. Thakur, N. Kishore S, annealing effect on microstructure and laser induced damage threshold of HfO2/ZrO2 multilayer mirrors, App. Opt., 55 (2016) 6108-6114 Available: doi. 10.1364/AO.55.006108 .
Jiao, T. Ding, Q. Zhang, comparative study of laser induced damage of HfO2/ZrO2 mirrors at 1064nm,Opt. Express., 19 (2011) 4059-4066, Available: doi:10.1364/OE.19.004059 .
Falmbigl, K. Godin, J. George,C. Mühlig, B. Rubin, effect of annealing on preparation and performance of HfO2/ZrO2 optical coating on UV applications, Opt. Express. 30 (2022) 12326- 12336, Available doi: 10.1364/OE.453345
Z. Tafti, M. B. Zarandi, H. A. Bioki, Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films, JOPN., 4 (2019) 87-98, Available doi: 20.1001.1.24237361.2019.4.1.6.4
bagheri, H. amini, S. raayati, ZrO2 Nanoparticles: Optical Properties of Tetragonal Phase and Enhanced Photocatalytic Activity, JOPN., 5(2020) 13-24, Available doi:20.1001.1.24237361.2020.5.2.2.9