Optical Absorption in an Array of Quantum Wires: Effects of Structural Parameters and External Fields
Subject Areas : Journal of Optoelectronical NanostructuresMohammad Javad Karimi 1 , Vahid Ashrafi-Dalkhani 2 , Sajad Ghajarpour-Nobandegani 3 , Mahnaz Mojab-abpardeh 4
1 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
2 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
3 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
4 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
Keywords: Linear optical absorption, Quantum-wire array, Electric field, Magnetic field,
Abstract :
In this present paper, the linear optical absorption coefficient in an array of quantum wires under the external electric and magnetic fields is studied. The effects of the external fields and structural parameters such as wires' radius, the number of wires, the distance between wires, and the Al composition on the optical absorption are investigated. Results indicate that the resonant peak of the absorption coefficient shifts toward the lower photon energies with increasing structural parameters. Also, results reveal that the absorption frequency is in the terahertz range and shifts to the higher (lower) energies by increasing the electric (magnetic) field. The resonant peak value of the linear optical absorption decreases by increasing the wires' radius, the distance between wires, and the Al composition. However, it changes non-monotonically with the number of wires. Also, the optical absorption reduces with the increase of the electric field and changes non-monotonically with the magnetic field.
[1] M. Balkanski, Devices Based on Low-Dimensional Semiconductor Structures, Springer, Netherlands, 2011. Available: https://link.springer.com/book/10.1007/978-94-009-0289-3
[2] K. Barnham, D. Vvedensky, Low dimensional semiconductor structures: Fundamentals and device applications, New York: Cambridge University Press, 2008. Available: https://www.cambridge.org/core/books/lowdimensional-semiconductor-structures/68178E0CCC55CDB88473DA460D629D01
[3] G. Cao, Y. Wang, Nanostructures and Nanomaterials, Synthesis, Properties, and Applications, London: World Scientific 2004. Available: https://www.worldscientific.com/worldscibooks/10.1142/7885#t=aboutBook
[4] G.C. Yi, Semiconductor Nanostructures for Optoelectronic Devices; Processing, Characterization and Applications, Berlin: Springer, 2012. Available: https://link.springer.com/book/10.1007/978-3-642-22480-5
[5] Y.B. Yu, S.N. Zhu, K.X. Guo, Electron-phonon interaction effect on optical absorption in cylindrical quantum wires, Solid State Commun. 139(2) (2006) 76-79. Available: https://www.sciencedirect.com/science/article/abs/pii/S003810980600319X
[6] R. Betancourt-Riera, J.N. Jalil, R. Riera, R. Betancourt-Riera, R. Rosas, Electron Raman scattering in semiconductor quantum wire in an external magnetic field, J. Phys: Condensed Matter. 20(4) (2008) 045203. Available: https://www.semanticscholar.org/paper/Electron-Raman-scattering-in-semiconductor-quantum-Betancourt-Riera-Jalil/6ea285de0ded2a0b3b1df6ae5befc998d5e6b619
[7] P.M. Krishna, S. Mukhopadhyay, A. Chatterjee, Polaronic effects in asymmetric quantum wire: An all-coupling variational approach, Solid State Commun. 138(6) (2006) 285-289. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038109806002237.
[8] M. Servatkhah, P. Hashemi, R. Pourmand. Binding energy in tuned quantum dots under an external magnetic field. JOPN, 7(4) (2022) 49-65. Available: https://jopn.marvdasht.iau.ir/article_5677.html.
[9] M. Kumar, S. Lahon, P.K. Jha, M. Mohan, Energy dispersion and electron g-factor of quantum wire in external electric and magnetic fields with Rashba spin orbit interaction, Superlatt. Microstruct. 57 (2013) 11-18. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603613000207.
[10] F. Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad, Study the energy states and absorption coefficients of quantum dots and quantum anti-dots with hydrogenic impurity under the applied magnetic field. JOPN, 7(1) (2022) 1-18.Available: https://jopn.marvdasht.iau.ir/article_5091_2c1e251baf8c1e39d880c41f089f0ba5.pdf
[11] Y. Karaaslan, B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field, Superlatt. Microstruct. 93 (2016) 32-39. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603616300866
[12] M. Studer, G. Salis, K. Ensslin, D.C. Driscoll, A.C. Gossard, Gate-controlled spin-orbit interaction in a parabolic GaAs/AlGaAs quantum well, Phys. Rev. Lett. 103 (2009) 027201. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.027201
[13] S.V. Zaitsev-Zotov, Y.A. Kumzerov, Y.A. Firsov, P. Monceau, Luttinger-liquid-like transport in long InSb nanowires, J. Phys.: Condens. Matter 12(20) (2000) L303. Available: https://iopscience.iop.org/article/10.1088/0953-8984/12/20/101
[14] T. C. Phong, H. V. Phuc, Nonlinear absorption line-widths in rectangular quantum wires, Mod. Phys. Lett. B 25(12-13) (2011) 1003-1011. Available: https://www.worldscientific.com/doi/10.1142/S0217984911026723
[15] S. Debald, B. Kramer, Rashba effect and magnetic field in semiconductor quantum wires, Phys. Rev. B 71(11) (2005) 115322. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.115322
[16] S. Frolov, S. Plissard, S. Nadj-Perge, L. Kouwenhoven, E. Bakkers, Quantum computing based on semiconductor nanowires. MRS Bulletin, 38(10)(2013) 809-815. Available: https://www.cambridge.org/core/journals/mrs-bulletin/article/abs/quantum-computing-based-on-semiconductor- nanowires/028CDAA26012CE0F93BA1BB569559DD3
[17] M. Henini, Henini, Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, Amsterdam: Elsevier 2008. Available: https://www.sciencedirect.com/book/9780080463254/handbook-of-self-assembled-semiconductor-nanostructures-for-novel-devices-in-photonics-and-electronics
[18] F.M. Hashimzade, T.G. Ismailov, B.H. Mehdiyev, Influence of external transverse electric and magnetic fields on the absorption of a parabolic quantum wire, Physica E 7(1-2) (2005) 140-150. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947704005557
[19] M.G. Barseghyan, A.K. Manaselyan, A.A. Kirakosyan, Intersubband absorption in quantum wire with a convex bottom in a magnetic field, J. Phys.: Condensed Matter 18 (33) (2006) S2161. Available: https://iopscience.iop.org/article/10.1088/0953-8984/18/33/S31/pdf
[20] L. Jiang and J. Sun, External electric field effect on the hydrogenic donor impurity in zinc-blende GaN/AlGaN cylindrical quantum well wire, Mod. Phys. Lett. B 24(23) (2010) 2413-2421. Available: https://www.worldscientific.com/doi/abs/10.1142/S0217984910024808?journalCode=mplb
[21] Y. Liu and Y. Yu, The electronic states and the optical absorption for an asymmetrical quantum well applied with an external electric field, Int. J. Mod. Phys. B 33 (26) (2019) 1950301 (9 pages). Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979219503016?journalCode=ijmpb
[22] A. Ghadimi, M. Ahmadzadeh. Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL), JOPN, 5(1) (2020) 19-34. Available:
https://jopn.marvdasht.iau.ir/article_4031.html
[23] G. Rezaei, M.J. Karimi, H. Pakarzadeh, Magnetic field effects on the electron Raman scattering in coaxial cylindrical quantum well wires, J. Lumin. 143 (2013), 551-557. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231313003207
[24] T. Sugaya, K.Y. Jang, C.K. Hahn, M. Ogura, K. Komori, A. Shinoda, K. Yonei, Enhanced peak-to-valley current ratio in InGaAs/InAlAs trench-type quantum-wire negative differential resistance field-effect transistors, J. Appl. Phys. 97(3) (2005) 034507. Available: https://pubs.aip.org/aip/jap/article-abstract/97/3/034507/471026/Enhanced-peak-to-valley-current-ratio-in-InGaAs?redirectedFrom=fulltext
[25] M. Amirhoseiny, G. Alahyarizadeh. Enhancement of deep violet InGaN double quantum wells laser diodes performance characteristics using superlattice last quantum barrier, JOPN, 6(2) (2021) 107-120. Available: https://jopn.marvdasht.iau.ir/article_4776.html
[26] X. Fu, G. Zhou, Spin current induced electric field in a Rashba quantum wire, Mod. Phys. Lett. B 24(07) (2010) 649-656. Available: https://www.worldscientific.com/doi/abs/10.1142/S0217984910022718
[27] H. Bahramiyan, R. Khordad and H. Azari, Electron-phonon interaction influence on optical properties of parallelogram quantum wires, Int. J. Mod. Phys. B 28 (22) (2014) 1450142 (12 pages). Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979214501422?journalCode=ijmpb
[28] E. Sadeghi, Linear and nonlinear optical absorption coefficients in an asymmetric graded ridge quantum wire, Superlatt. Microstruct. 49(1) (2011) 91-98. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603610002314
[29] N. Arunachalam, A.J. Peter, C.K.Yoo, Exciton optical absorption coefficients and refractive index changes in a strained InAs/GaAs quantum wire: The effect of the magnetic field, J. Lumin. 132(6)(2012) 1311-1317. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231312000051
[30] H.V. Phuc, T.C.Phong, Calculation of the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in quantum wires, Comput. Mater. Sci. 49(4) (2010) S260-S262. Available: https://www.sciencedirect.com/science/article/abs/pii/S0927025610001126
[31] C. González-Santander, F. DomÃnguez-Adame, Exciton states and optical absorption in quantum wires under laser radiation, Phys. Lett. A 374(22) (2010) 2259-2261. Available: https://www.sciencedirect.com/science/article/abs/pii/S0375960110003269
[32] M.R. Sakr, Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction, Phys. Lett. A 380(39) (2016) 3206-3211. Available: https://www.sciencedirect.com/science/article/abs/pii/S0375960116304406
[33] R. Khordad, H. Bahramiyan, Effects of electron-phonon interaction and impurity on optical properties of hexagonal-shaped quantum wires, Pramana 88(3) (2017) 50. Available: https://link.springer.com/article/10.1007/s12043-016-1348-x
[34] M.J. Karimi, M. Hosseini, Electric and magnetic field effects on the optical absorption of elliptical quantum wire, Superlatt. Microstruct. 111 (2017) 96-102. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603617311436#:~:text=The%20exciton%20effect%20in%20MQWs,under%20a%20strong%20electric%20field.
[35] P. Harrison, A. Valavanis, Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures, Chichester: (John Wiley and Sons, 2016. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/0470010827
[36] V. Ashrafi-Dalkhani, S. Ghajarpour-Nobandegani, M.J. Karimi, Effects of spin-orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring, Eur. Phys. J. B 92(1) (2019) 1-6. Available: https://link.springer.com/article/10.1140/epjb/e2018-90691-5#:~:text=Results%20indicate%20that%20the%20spin,higher%20energies%20with%20increasing%20eccentricity.
[37] E.C. Niculescu, C. Stan, D. Bejan, C. Cartoaje, Impurity and eccentricity effects on the nonlinear optical rectification in a quantum ring under lateral electric fields, J. Appl. Phys. 122(14) (2017) 144301. Available: https://pubs.aip.org/aip/jap/article-abstract/122/14/144301/144905/Impurity-and-eccentricity-effects-on-the-nonlinear
[38] S. Ghajarpour-Nobandegani, M.J. Karimi, Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot, Opt. Mater. 82 (2018) 75-80. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925346718303173
[39] S. Ghajarpour-Nobandegani, V. Ashrafi-Dalkhaniy, M. J. Karimi, Effects of external fields on the optical absorption of quantum multirings, Int. J. Mod. Phys. B 34 (17) (2020) 2050153 (9 pages). Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979220501532.