Electronic Conductance Modulation of Armchair Graphyne Nanoribbon by Twisting Deformation
Subject Areas : Journal of Optoelectronical NanostructuresSomayeh Fotoohi 1 * , Mansoureh Pashangpour 2 , Saeed Haji-Nasiri 3
1 - Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University,
Islamshahr, Iran
2 - Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
3 - Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
Keywords: α-Graphyne Nanoribbon, Twisting Deformation, Transmission, Molecular Energy Spectrum, Transmission Pathways,
Abstract :
Abstract
The electronic and transport properties of armchair α-
graphyne nanoribbons (α-AGyNRs) are studied using
density functional theory with non-equilibrium Green
function formalism. The α-AGyNRs are considered with
widths N = 6, 7 and 8 to represent three distinct families
behavior in presence of twisting. The band structure,
current-voltage characteristic, transmission spectra,
molecular energy spectrum, molecular projected self-
consistent Hamiltonian (MPSH), and transmission
pathways are studied for α-AGyNRs with θ= 0º, 30º, 60º
and 90º. The results indicate that 6 and 7 α-AGyNRs
devices are semiconductor, while 8 α-AGyNR device has
metallic character. Moreover, these behaviors are preserved
by applying the twist. Our theoretical study shows that the
electronic conduction of α-AGyNRs can be tuned by
twisted deformation. The maximum modulation of
conductance at 1.2 V is obtained 69.94% for 7 α-AGyNR
device from θ=0º to θ=90º. The investigation of MPSH
demonstrates that distribution of charge density get
localized on twisting sites which impact on the electron
tunneling across the scattering region.
[1] S. Yu, T. Teng, C. Huang, H. Hsieh and Y. Wei, Performance Evaluation
of Carbon-Based Nanofluids for Direct Absorption Solar Collector,
Energies, 16 (2023, Jan.) 1-17.
Available: https://doi.org/10.3390/en16031157
[2] X. Shi, H. Liu, Z. Hu, J. Zhao, J. Gao, Porous carbon-based metal-free
monolayers towards to high stable and flexible wearable thermoelectric and
microelectronics, Nanoscale, 15 (2023, Dec.) 1522-1528. Available:
https://doi.org/10.1039/D2NR05443D
[3] L.Yi, K. Noguchi, L.iu, A. Otsu,T. Onda, Z. Chen, Deformation behavior
of graphite and its effect on microstructure and thermal properties of
aluminum/graphite composites, Journal of Alloys and Compounds, 933
(2023, Feb.) 167752.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0925838822041433
[4] S. Zhao, X. Zhang, Y. Ni , Q. Peng , Y. Wei , Anisotropic mechanical
response of a 2D covalently bound fullerene lattice, Carbon, 202 (2023,
Jan.) 118-124.
[5] S. N. Jafari, A. Ghadimi, S. Rouhi, Strained Carbon Nanotube (SCNT) Thin
Layer Effect on GaAs Solar Cells Efficiency , Journal of Optoelectronical
Nanostructures , 4 (2020, Autumn) 87-110.
https://jopn.marvdasht.iau.ir/article_4505.html
[6] H. H. Madani, M. R. Shayesteh, M. R. Moslemi, A Carbon Nanotube
(CNT)-based SiGe Thin Film Solar Cell Structure, Journal of
Optoelectronical Nanostructures, 6 (2021,Winter) 71-86.
Available: https://jopn.marvdasht.iau.ir/article_4541.html
[7] A. K. Geim ,K. S. Novoselov, The rise of graphene, Nature Materials , 6
(March 2007) 183–191.
Available: https://www.nature.com/articles/nmat1849
[8] K.S. Novoselov , A.K. Geim , S.V. Morozov2 , D. Jiang , Y. Zhang , S.V.
Dubonos , I.V.Grigorieva , A.A. Firsov, Electric Field Effect in Atomically
Thin Carbon Films , science, 306 (2004, Oct.) 666-669.
Available: https://www.science.org/doi/abs/10.1126/science.1102896
[9] M.F.Craciun, S.Russo, M.Yamamoto, S.Taruchac, Tuneable electronic
properties in graphene, Nanotoday, 6 (2011, Feb.) 42-60.
Available: https://doi.org/10.1016/j.nantod.2010.12.001
[10] J. Wang, F. Ma, W. Liang, M. Sun, Electrical properties and applications
of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN
heterostructures, Materials Today Physics, 2 (2017, Sep.) 6-34.
Available: https://doi.org/10.1016/j.mtphys.2017.07.001
[11] M Pashangpour, V Ghaffari, Investigation of structural and electronic
transport properties of graphene and graphane using maximally localized
Wannier functions, Journal of Theoretical and Applied Physics , 7 (2013,
Dec.), 1-8.
Available: https://jtap.srbiau.ac.ir/article_18825.html
[12] Somayeh Fotoohi , Mohammad Kazem Moravvej-Farshi , Rahim Faez,
Electronic and transport properties of monolayer graphene defected by one
and two carbon ad-dimers, Appl. Phys. A, 116 (2014, Apr.) 2057–2063.
Available: https://link.springer.com/article/10.1007/s00339-014-8400-9 .
[13] F.V. Alamdarlo, G. Solookinejad, F. Zahakifar, M. R. Jalal, M. Jabbari,
Synthesis of Graphene Oxide Functionalized with Amio Methyl Phosphonic
Acid (AMPA) and its Structural Characterization, Journal of
Optoelectronical Nanostructures, 6 (2021, Spring) 91-106.
Available: https://jopn.marvdasht.iau.ir/article_4770.html
[14] M. Jabbari, M. Dehghan, M. k. moravvej farshi,G. Darvish, M. Ghaffari-
miab, Ultra-Compact Bidirectional Terahertz Switch Based on Resonance
in Graphene Ring and Plate, Journal of Optoelectronical Nanostructures, 4
(Autumn, 2019) 99-112.
Available: https://jopn.marvdasht.iau.ir/article_3761.html
[15] h. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional
Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures ,
3 (Autumn, 2018) 45-58.
Available: https://jopn.marvdasht.iau.ir/article_3259.html
[16] R. H. Baughman, H. Eckhardt, and M. Kertesz , Structure property
predictions for new planar forms of carbon: Layered phases containing sp2
and sp atoms, J. Chem. Phys., 87 (Dec. 1987) 6687-6699.
Available: https://aip.scitation.org/doi/10.1063/1.453405
[17] W. Wu, W. Guo and , X. C. Zeng, Intrinsic electronic and transport
properties of graphyne sheets and nanoribbons, Nanoscale, 5 (2013, Jul.)
9264-9276.
Available: https://doi.org/10.1039/C3NR03167E
[18] S. Lakshmy, A. Kundu, N. Kalarikkal, B. Chakraborty, Pristine and
Transition Metal Decorated Holey Graphyne Monolayer as an Ammonia
sensor: Insights from DFT Simulations, J. Phys. D: Appl. Phys., 56 ( 2023,
Jan.) 055402.
Available: https://iopscience.iop.org/article/10.1088/1361-6463/acae2e
[19] K. Srinivasu and Swapan K. Ghosh,Graphyne and Graphdiyne: Promising
Materials for Nanoelectronics and Energy Storage Applications, J. Phys.
Chem. C, 116 (2012, Jan.), 5951–5956.
Available: https://doi.org/10.1021/jp212181h .
[20] X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y. Kim, E.Yun, E. H. Baek,
D. H. Ryu, H. Lee, Constructing two-dimensional holey graphyne with
unusual annulative π-extension, Matter , 5 (2022, Jul.), 2306-2318.
Available: https://doi.org/10.1016/j.matt.2022.04.033
[21] M Golzani, M Poliki, S Haji-Nasiri, γ-Graphyne rectifier and NDR tunable
by doping, line edge roughness and twist, Computational Materials Science,
190 (2021, Apr.)110303.
Available:https://www.sciencedirect.com/science/article/abs/pii/S09270256
21000288
[22] J. Ren,N. Zhang,P. Liu, Li adsorption on nitrogen-substituted graphyne for
hydrogen storage, Fullerenes, Nanotubes and Carbon Nanostructures , 29
(2021, Oct.) 212-217.
Available: https://doi.org/10.1080/1536383X.2020.1830066
[23] D. C. M. Rodrigues, L. L. Lage, P. Venezuela, A. Latge, Exploring the
enhancement of the thermoelectric properties of bilayer graphyne
nanoribbons , Phys. Chem. Chem. Phys., 24 (2022, Apr.), 9324–9332.
Available:https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp05491
k
[24] Y. Ni,X. Wang, W. Tao,S. . Zhu , K.Yao, The spin-dependent transport
properties of zigzag α-graphyne nanoribbons and new device design,
Scientific Reports, 6, (2016, May. ) 25914.
Available: https://www.nature.com/articles/srep25914
[25] P. Nayebi, M. Shamshirsaz, Effect of vacancy defects on transport
properties of α-armchair graphyne nanoribbons, The European Physical
Journal B , 93 (2020, Sep.) 170.
Available:https://link.springer.com/article/10.1140/epjb/e2020-10183-5
[26] J. A. Tallaa, E. A. Almahmoudb , K. Al-Khaza’leha, and H. Abu-Farsakhc,
Structural and Electronic Properties of Rippled Graphene with Different
Orientations of Stone-Wales Defects: First-Principles Study ,
Semiconductors , 55 (2022, Feb.) 643–653.
Available: https://link.springer.com/article/10.1134/S1063782621070198
[27] A. Fasolino, J. H. Los, M. I. Katsnelson, Intrinsic ripples in graphene,
Nature Materials, 6 (2007, Sep.) 858–861.
Available: https://www.nature.com/articles/nmat2011 .
[28] Y. Huang, L. Zhang, H. Lu, F. Lai, Y.Miao and T. Liu, A highly
flexible and conductive graphene-wrapped carbon nanofiber membrane for
high-performance electrocatalytic applications, Inorg. Chem. Front., 3
(2016, May.) 969-976. Available:
https://pubs.rsc.org/en/content/articlelanding/2016/qi/c6qi00101g
[29] C. Lenear, M. Becton, X. Wang, Computational analysis of hydrogenated
graphyne folding, Chemical Physics Letters, 646 (2016, Feb.) 110-118.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0009261416000385
[30] M.Saiz-Bretín, F.Domínguez-Adame, A.V.Malyshev, Twisted graphene
nanoribbons as nonlinear nanoelectronic devices, Carbon, 149 (2019, Aug.)
587-593.
Available:https://www.sciencedirect.com/science/article/abs/pii/S00086223
19304038
[31] S. Yue, Q. Yan, Z. Zhu, H. Cui, Q. Zheng, G. Su, First-principles study on
electronic and magnetic properties of twisted graphene nanoribbon and
Möbius strips, Carbon, 71 (2014, May.) 150-158.
Available: https://doi.org/10.1016/j.carbon.2014.01.023
[32] G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, and Z. Q. Fan, Altering
regularities of electronic transport properties in twisted graphene
Nanoribbons, Appl. Phys. Lett., 101, (2012, Jul.) 023104.
https://aip.scitation.org/doi/10.1063/1.4733618
[33] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, Decoupling
superconductivity and correlated insulators in twisted bilayer graphene,
Nature Physics , 16 (2020) 926-930.
Available: https://doi.org/10.48550/arXiv.1911.13302
[34] A. Nimbalkar, H. Kim, Opportunities and Challenges in Twisted Bilayer
Graphene: A Review, Nano-Micro Letters, 12 (2020, Jun.) 126.
Available: https://link.springer.com/article/10.1007/s40820-020-00464-8
[35] X. Wei, G. Guo, T. Ouyang, and H. Xiao, Tuning thermal conductance in
the twisted graphene and gamma graphyne nanoribbons, Journal of Applied
Physics 115, (2014, Apr.) 154313.
Available: https://aip.scitation.org/doi/10.1063/1.4872136
[36]V. Do, Non-equilibrium Green function method: theory and application in
simulation of nanometer electronic devices, Adv. Nat. Sci: Nanosci.
Nanotechnol., 5 (2014, Jun.) 033001.
Available: https://iopscience.iop.org/article/10.1088/2043-6262/5/3/033001
[37] R. M. Dreizler and E. K. U. Gross. Density Functional Theory (1990,
Springer,).
Available: https://link.springer.com/book/10.1007/978-3-642-86105-5
[38] R. G. Parr, Y. Weitao. Density-functional Theory of Atoms and Molecules
Oxford University Press, (1994, Jan.).
Available: https://academic.oup.com/book/41995
[39] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure
calculations of poly-atomic systems using density-functional theory,
Computer Physics Communications, 119 (1999, Jun.) 67-98.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S001046559800201X
[40] W. Kohn, L.J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev., 140 (1965) A1133.
Available: http://dx.doi.org/10.1103/PhysRev.140.A1133
[41] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica , M. A. Ratner,
Exploring local currents in molecular junctions, Nat. Chem., 2 (2010, Mar.)
223-228.
Available: https://www.nature.com/articles/nchem.546
[42] Y. Tsuji, R. Movassagh, S. Datta and R. Hoffmann, Exponential
Attenuation of Through-Bond Transmission in a Polyene: Theory and
Potential Realizations, ACS Nano, 9 (2015, Sep.) 11109-11120.
Available: https://pubs.acs.org/doi/10.1021/acsnano.5b04615 .