Effects of Effective Layer Thickness, Light Intensity and Electron-Hole Pair Separation Distance on The Performance of Organic Bulk Heterojunction Solar Cells
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Physics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
Keywords: Organic Photovoltaic (OPV), Bulk Hetero-Junction (BHJ), Open Circuit Voltage, Short Circuit Current,
Abstract :
In this paper the influence of different parameters such as active layer thickness, light intensity and charge separation distance on the photocurrent-voltage, short circuit current density (Jsc) and open circuit voltage (Voc) characteristics in MEH-PPV:PCBM BHJ devicesis studied. For this purpose, the numerical continuum modelbased on drift-diffusion approximation is used. The J-V characteristics of MEH-PPV:PCBM BHJ devices under illumination change considerably with varying the active layer thickness from 40nm to 280nm. In these devices, as the active layer thickness increases from 40 nm to 120 nm the short-circuit current density increases dramatically. The open circuit voltage (Voc) is partially affected by varying the active layer thickness. In these devices, as the light intensity increases, the current density would increase at low voltages. Also, as the charge separation distance “a” increases, The exciton dissociation rate (kdissnexc) and current density would decrease.
[1] He, Z., et al, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics 6(9), (2012) 593-597.
Available: https://doi.org/10.1038/nphoton.2012.190
[2] Dou, L., et al, Tandem polymer solar cells featuring a spectrally matched low-band gap polymer, Nat. Photonics 6(3), (2012) 180-185.
Available: https://doi.org/10.1038/nphoton.2011.356
[3] Li, N., et al, Towards 15 % energy conversion efficiency: A systematic study of the solution-processed organic tandem solar cells based on commercially available materials, Energy & Environmental Science.6 (2013) 3407-3413
Available: https://doi.org/10.1039/C3EE42307G
[4]G. Dennler, M.C.Scharber, C.J.Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater. 21 (2009) 1323-1338.
Available:https://doi.org/10.1002/adma.200801283
[5] M. Hasani , R. Chegell . Electronic and optical properties of the Graphene and Boron Nitride nanoribbons in presence of the electric field. Journal of Optoelectrical Nano Structuers.5.2 (2020) 49-64.
Available: http://jopn.miau.ac.ir/article_4218.html
[6] S. Rafiquea, S. M. Abdullaha, K. Sulaimana, M. Iwamotob, Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement, Renewable and Sustainable Energy Reviews.84 (2018) 43–53.
Available:https://doi.org/10.1016/j.rser.2017.12.008
[7] F. A. Roghabadi, N. Ahmadi, V. Ahmadi, A. D. Carlo, K. O. Aghmiuni, A. S. Tehrani, F. S. Ghoreishi, M. Payandeh, N. M. R. Fumanid, Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties, Solar Energy 173 (2018) 407–424.
Available:https://doi.org/10.1016/j.solener.2018.07.058
[8] W. Ma, J. Y. Kim, K. Lee, and A. J. Heeger, Effect of the molecular weight of poly (3-hexylthiophene) on the morphology and performance of polymer bulk heteojunction solar cells, Macromol. Rapid Commun. 28, (2007) 1776-1780.
Available:https://doi.org/10.1002/marc.200700280
[9] G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene bulk-heterojunction solar cells, Adv. Mater. 21, (2009) 1323-1338.
Available: https://doi.org/10.1002/adma.200801283
[10] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, J.V. Manca, On the origin of the open-circuit voltage of polymer- fullerene solar cells, Nat. Mater. 8 (2009) 904-909.
Available:https://doi.org/10.1038/nmat2548
[11] A. Foertig, A. Baumann, D. Rauh, V. Dyakonov, C. Deibel, Charge carrier concentration and temperature dependent recombination in polymer-fullerene solar cells, Appl.Phys. Lett. 95 (2009) 052104.
Available:https://doi.org/10.1063/1.3202389
[12] G. Garcia-Belmonte, P.P.Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy, Sol. Energy Mater. Sol. Cells 94 (2010) 366-375.
Available:https://doi.org/10.1016/j.solmat.2009.10.015
[13] A. Spies, M. List, T. Sarkar, and U.Würfel, On the Impact of Contact Selectivity and Charge Transport on the Open-Circuit Voltage of Organic Solar Cells, Adv. Energy Mater,( 2016) 1601750.
Available:https://doi.org/10.1002/aenm.201601750
[14] N. Sadoogi, A. Rostami, B. Faridpak, and M. Farrokhifar, Performance analysis of organic solar cells: Opto-electrical modeling and simulation, Engineering Science and Technology, an International Journal.24 (2021) 229–235.
Available:https://doi.org/10.1016/j.jestch.2020.08.006
[15] S. I. Uddin, M. Tahir, F. Aziz, M. R. Sarker, F. Muhammad, D. N. Khan, and S. H. M. Ali, Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer, Energies.13 (2020), 5915.
Available:https://doi.org/10.3390/en13225915
[16] C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, Z. He, Modeling and simulation of bulk heterojunction polymer solar cells,Solar Energy Materials & Solar Cells 127 (2014) 67–86.
Available:https://doi.org/10.1016/j.solmat.2014.04.009
[17] L. Jhamba, D. Wamwangi, Z. Chiguvare, Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM:P3HT, Optical and Quantum Electronics.52 (2020) 245.
Available:https://doi.org/10.1007/s11082-020-02362-0
[18] W. Yang, Y. Yao, and C.Q. Wu, Mechanisms of device degradation in organic solar cells:Influence of charge injection at the metal/organic contacts, Organic Electronics.14 (2013) 1992–2000.
Available:https://doi.org/10.1016/j.orgel.2013.04.036
[19] C. R. Singh , C. Li , C. J. Mueller , S. Hüttner, and M. Thelakkat, Influence of Electron Extracting Interface Layers in Organic Bulk-Heterojunction Solar Cells, Adv. Mater. Interfaces.3 (2016) 1500422.
Available:https://doi.org/10.1002/admi.201500422
[20] A.H. Fallahpour, A.Gagliardi, F.Santoni, D. Gentilini, A.Zampetti, M.AufderMaur, and A.Di Carlo, Modeling and simulation of energetically disordered organic solar cells, J.Appl. Phys. 116 (2014) 184502.
Available:https://doi.org/10.1063/1.4901065
[21] M. Erray, M. Hanine, E. M. Boufounas, and A. E. Amrani, Combined effects of carriers charge mobility and electrodes work function on the performances of polymer/fullerene P3HT:PCBM based organic photovoltaic solar cell, Eur. Phys. J. Appl. Phys. 82 (2018) 30201.
Available:https://doi.org/10.1051/epjap/2018180070
[22] I. Hwang and N. C. Greenham, Modeling photocurrent transients in organic solar cells, Nanotechnology 19 (2008) 424012.
Available:https://doi 10.1088/0957-4484/19/42/424012
[23] W. Tress, K. Leo, and M. Riede, Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study, Phys. Rev. B 85 (2012) 155201.
Available:https://doi.org/10.1103/PhysRevB.85.155201
[24] G. Dennler, K. Forberich, M.C. Scharber, C.J. Brabec, I. Tomis, K. Hingerl et al., Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells, J. Apply. Phys. 102 (2007) 054516.
Available:https://doi.org/10.1063/1.2777724
[25] R. Hausermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, and B. Ruhstaller, Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis, J. Apply. Phys. 106 (2009) 104507.
Available:https://doi.org/10.1063/1.3259367
[26] A. Petersen, T. Kirchartz, and T.A. Wagner, Charge extraction and photocurrent in organic bulk hetero-junction solar cells, Phys. Rev. B 85 (2012) 045208.
Available: https://doi.org/10.1103/PhysRevB.85.045208
[27] J.T. Shieh, C.H. Liu, H.F. Meng, S.R. Tseng, Y.C. Chao, and S.F. Horng, The effect of carrier mobility in organic solar cells, J. Appl. Phys. 107 (2010) 084503.
Available:https://doi.org/10.1063/1.3327210
[28] A.S. Lin and J.D.Phillips, Drift-diffusion modeling for impurity photo-voltaic devices, IEEE Trans. Electron Devices 56 (2009) 3168-3174.
Available: https://doi.org/10.1109/TED.2009.2032741
[29] K.Wee Shing, M. Pant, Y.A. Akimov, G. Wei Peng, and L. Yuning, Three-dimensional optoelectronic model for organic bulk heterojunction solar cells, IEEE J. Photovolt. 1 (2011) 84-92.
Available:https://doi.org/10.1109/JPHOTOV.2011.2163620
[30] J.D. Kotlarski, P.W.M. Blom, L.J.A. Koster, M. Lenes, and L.H.Slooff, Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 103 (2008) 084502.
Available:https://doi.org/10.1063/1.2905243
[31] W. Vervisch, S. Biondo, G. Riviere, D. Duche, L. Escoubas, P. Torchio et al., Optical-electrical simulation of organic solar cells: Excitonic modeling parameter influence on electrical characteristics, Appl. Phys. Lett. 98 (2011) 253306.
Available:https://doi.org/10.1063/1.3582926
[32] O. J. Sandberg, M. Nyman, and R. Osterbacka, Effect of contacts in organic bulk hetero-junction solar cells, Phys. Rev. Appl. 1 (2014) 024003.
Available:https://doi.org/10.1103/PhysRevApplied.1.024003
[33] R. Yahyazadeh, Z. Hashempour, Effect of Hyrostatic pressure on optical Absorption coeffivient of InGaN/GaN of Multiple Quantum well solar cells, Journal of optoelectronical Nano structures,6.2 (2021) 1-22
Available: https://doi.org/10.304951JOPN.2021.27941.1221
[34] M. Saleheen, S. M. Arnab, and M. Z. Kabir, Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells, Energies.9 (2016) 412.
Available: https://doi.org/10.3390/en9060412
[35]A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, S-shaped current-voltage characteristics of organic solar devices, Phys. Rev. B. 82 (2010) 115306.
Available:https://doi.org/10.1103/PhysRevB.82.115306
[36] A.H. Fallahpour, A. Gagliardi, D. Gentilini, A. Zampetti, F.Santoni, M. Auf der maur, A. Di Carlo, Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells, J. Comput. Electron.13 (2014) 933-942.
Available:https://doi.org/10.1007/s10825-014-0611-y
[37] F. Monestier, J.J. Simon, P. Torchio, L.Escoubas, F. Flory, S. Bailly et al., Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend, Sol. Energy Mater. Sol. Cells.91(2007) 405-410 .
Available:https://doi.org/10.1016/j.solmat.2006.10.019
[38] T. Kirchartz, J. Mattheis, and U. Rau, Detailed balance theory of excitonic and bulk heterojunction solar cells,Phys. Rev. B.78 (2008) 235320.
Available:https://doi.org/10.1103/PhysRevB.78.235320
[39] G. F. A. Dibb, T. Kirchartz, D. Credgington, J. R. Durrant, and J. Nelson ,Analysis of the Relationship between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells,J. Phys. Chem. Lett. 2 (2011) 2407.
Available:https://doi.org/10.1021/jz201104d
[40] S. R. Cowan, A. Roy, and A. J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells,Phys. Rev. B.82 (2010) 245207.
Available:https://doi.org/10.1103/PhysRevB.82.245207
[41] A.V. Nenashev, S.D. Baranovskii, M. Wiemer, F. Jansson, R. Osterbacka, A.V. Dvurechenskii et al., Theory of exciton dissociation at the interface between a conjugated polymer and an electron acceptor, Phys. Rev. B.84 (2011) 035210.
Available:https://doi.org/10.1103/PhysRevB.84.035210
[42] M. Wiemer, A.V. Nenashev, F. Jansson, and S.D. Baranovskii,on the efficiency of exciton dissociation at the interface between a conjugated polymer and an electron acceptor, Appl. Phys. Lett. 99 (2011) 013302.
Available:https://doi.org/10.1063/1.3607481
[43] C. Deibel, T. Strobel, and V. Dyakonov, Role of the charge transfer state in organic donor-acceptor solar cells, Adv. Mate. 22 (2010) 4097-4111.
Available:https://doi.org/10.1002/adma.201000376
[44] C. Deibel, Charge carrier dissociation and recombination in polymer solar cells, Phys. Status Solidi A.206 (2009) 2731-2736.
Available:https://doi.org/10.1002/pssa.200925282
[45] N.S. Christ, S.W. Kettlitz, S. Valouch, S. Zufle, C. Gartner, M. Punke et al., Nanosecond response of organic solar cells and photodetectors, J. Appl. Phys. 105 (2009) 104513.
Available:https://doi.org/10.1063/1.3130399
[46] G. Juska, K. Genevicius, N. Nekrasa et al., Charge carrier transport, recombination, and trapping in organic solar cells studied by double injunction technique, IEEE J. Sel. Top. Quantum Electron. 16 (2010) 1764-1769.
Available:https://doi.org/10.1109/JSTQE.2010.2041752
[47] R.C.I. Mackenzie, T. Kirchartz, G. F.A. Dibb, and J. Nelson, Modeling non-geminate recombination in P3HT:PCBM solar cells, J. Phys. Chem. C.115 (2011) 9806-9813.
Available:https://doi.org/10.1021/jp200234m
[48] A. Mahmoudloo, Investigation and Simulation of Recombination Models in Virtual Organic Solar Cell, Journal of Optoelectronical Nanostructures, 7.4 (2022) 1-12.
Available: https://doi:10.30495/jopn.2022.30243.1263
[49] D. Jalalian1, A. Ghadimi, A. K. Sarkaleh, Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells, Journal of Optoelectronical Nanostructures, 5.2 (2020) 65-78.
Available: https://dorl.net/dor/20.1001.1.24237361.2020.5.2.6.3
[50] S. L. M. Vanmensfoort, V. Shabro, R. J. D. Vries, R. A. J. Janssen, and R. Coehoorn, Hole Transport in The Organic Small Molecule Material: Evidence For The Presence of Correlated Disorder, J. Appl. Phys. 107 (2010) 113710.
Available:https://doi.org/10.1063/1.3407561
[51] A. ayobi, S.N. Mirnia, Influence of Gaussian disorder and exponential traps on charge carriers transport and recombination in single layer polymer light-emitting diodes based on PFO as emitting layer, Opt. Quant. Elect (2019).
Available:https://doi.org/10.1007/s11082-019-1997-3
[52] A. Pivrikas, N. S. Sariciftci, G. Juska, and R. Osterbacka, A review of charge transport and recombination in polymer/fullerene organic solar cells, Prog.in Photovolt.: Res. Appl. 15 (2007) 677-696.
Available:https://doi.org/10.1002/pip.791
[53] H. Hashemi , M.R. Shayesteh, M.R. Moslemi, A Carbon Nanotube CNT –based SiGe Thin Film Solar cell structure, Journal of optoelectronical Nano structures, 6.1(2021) 71- 86
Available:https://doi.org/10.30495/JOPN. 2021.4541
[54] J. Hwang, A. Wan, and A. Kahn, Energetics of metal-organic interfaces: New experiments and assessment of the field, Mater. Sci. Eng: R: Rep. 64 (2009) 1-31.
Available:https://doi.org/10.1016/j.mser.2008.12.001
[55] G. Garcia-Belmonte,Temperature dependence of open-circuit voltage in organic solar cells from generation-recombination kinetic balance, Sol. Energy Mater. Sol. Cells 94 (2010) 2166-2169.
Available:https://doi.org/10.1016/j.solmat.2010.07.006
[56] J. Wang,L. Xu,Y. J. Lee,M. D. A. Villa,A. V. Malko,and J. W. P. Hsu, Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices, Nano Lett.15 (2015) 7627−7632.
Available:https://doi.org/10.1021/acs.nanolett.5b03473
[57] M. Nyman, O. J. Sandberg, W. Li, S. Zeiske, R. Kerremans, P. Meredith, and A. Armin, Requirements for Making Thick Junctions of Organic Solar Cells based on Nonfullerene Acceptors, Sol. RRL.5 (2021) 2100018.
Available:https://doi.org/10.1002/solr.202100018
[58] M. Abdallaoui, N. Sengouga, A. Chala, A.F. Meftah, A.M. Meftah, Comparative study of conventional and inverted P3HT: PCBM organic solar cell, Optical Materials 105 (2020) 109916.
Available:https://doi.org/10.1016/j.optmat.2020.109916