Theoretical assessment of oxygen adsorption behavior onto pristine, Be-and Ca-doped Mg17 nanoclusters
Subject Areas : Journal of Optoelectronical NanostructuresMahmood Reza Dehghan 1 , Sara Ahmadi 2 , Zahrabatoul Mosapour Kotena 3
1 - Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad,
Iran.
2 - Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Malaysia
3 - Department of Chemistry, Sharif University & Technology, P.O. Box 11365-9516,
Tehran, Iran
Keywords: DFT, Adsorption, Electronic properties, Magnesium nanocluster, Oxygen,
Abstract :
Herein, the density functional theory (DFT) approach was
used to investigate the behavior of oxygen during the
adsorption over the magnesium nanoclusters Mg16M
(M=Be, Mg, and, Ca). The electronic properties of Mg16M
were remarkably Under the influence of absorption of the
first and second O2 molecules. NBO analysis showed
charge transfer from nanoclusters to adsorbed O2
molecules. According to Eads and Δš» a thermodynamically
desirable chemisorption process was foretoken. The
negative values of Δšŗ are a witness to spontaneous
adsorption. The DFT calculations show that the adsorption
of the second oxygen is energetic more desirable than the
first molecule. The Mg16Ca—O2 complex with the
minimum bond length and maximum Eads showed the
strongest uni and di-molecular O2 adsorption.
[1] W.M. Haynes, CRC handbook of chemistry and physics, 95 ed., CRC press, 2014. Available: https://doi.org/10.1201/b17118
[2] A.E. Galashev, Molecular-dynamic modeling of ultradisperse water in the earth atmosphere. High Temp., 48 (4) (2010) 518-526. Available: https://doi.org/10.1134/S0018151X10040097
[3] K.M. Manoj, V. Soman, V.D. Jacob, A. Parashar, D.A. Gideon, M. Kumar, A. Manekkathodi, S. Ramasamy, K. Pakshirajan, N.M. Bazhin, Chemiosmotic and murburn explanations for aerobic respiration: predictive capabilities, structure-function correlations and chemico-physical logic. ARCH BIOCHEM BIOPHYS., 676 (2019) 108128. Available: https://doi.org/10.1016/j.abb.2019.108128
[4] R. Reed, Solar inactivation of faecal bacteria in water: the critical role of oxygen, Lett. Appl. Microbiol., 24 (4) (1997) 276-280. Available: https://doi.org/10.1046/j.1472-765X.1997.00130.x
[5] D.B. Papkovsky, G.V. Ponomarev, W. Trettnak, P. O'Leary, Phosphorescent complexes of porphyrin ketones: optical properties and application to oxygen sensing. Anal. Chem., 67 (22) (1995) 4112-4117. Available: https://doi.org/10.1021/ac00118a013
[6] W. Yang, H. Wang, X. Zhu, L. Lin, Development and application of oxygen permeable membrane in selective oxidation of light alkanes. J. Top. Catal., 35 (1-2) (2005) 155-167. Available: https://doi.org/10.1007/s11244-005-3820-6
[7] L.W. Winkler, The determination of dissolved oxygen in water. Berlin DeutChem Gas., 21 (1888) 2843-2855.
[8] K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons., vol. 30, 1992.
[9] R. Ramamoorthy, P. Dutta, S. Akbar, Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci., 38 (21) (2003) 4271-4282. Available: https://doi.org/10.1023/A:1026370729205
[10] Y. Amao, Probes and polymers for optical sensing of oxygen. Microchim. Acta., 143 (1) (2003) 1-12. Available: https://doi.org/10.1007/s00604-003-0037-x
[11] N.L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem.
C., 119 (11) (2015) 6398-6404. Available: https://doi.org/10.1021/jp513019z
[12] E. Vessally, S.A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta., 162 (2017) 505-510. Available: https://doi.org/10.1016/j.talanta.2016.10.010
[13] G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chemical reviews., 112 (10) (2012) 5317-5338. Available: https://doi.org/10.1021/cr300020c
[14] S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews., 40 (5) (2011) 2644-2672. Available: https://doi.org/10.1039/c0cs00079e
[15] S. Guo, E. Wang, Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Accounts of Chemical Research., 44 (7) (2011) 491-500. Available: https://doi.org/10.1021/ar200001m
[16] M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R. Jin, Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. Journal of the American Chemical Society., 130 (18) (2008) 5883-5885. Available: https://doi.org/10.1021/ja801173r
[17] O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, Critical size for the observation of quantum confinement in optically excited gold clusters. Journal of the American Chemical Society, 132 (1) (2010) 16-17. Available: https://doi.org/10.1021/ja907984r
[18] S.H. Yau, O. Varnavski, T. Goodson III, An ultrafast look at Au nanoclusters. Accounts of chemical research., 46 (7) (2013) 1506-1516. Available: https://doi.org/10.1021/ar300280w
[19] P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science., 318 (5849) (2007) 430-433. Available: https://doi.org/10.1126/science.1148624
[20] J. Zheng, P.R. Nicovich, R.M. Dickson, Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem., 58 (2007) 409-431. Available: https://doi.org/10.1146/annurev.physchem.58.032806.104546
[21] I. Heidari, S. De, S. Ghazi, S. Goedecker, D. Kanhere, Growth and Structural Properties of Mg N (N= 10–56) Clusters: Density Functional Theory Study. J. Phys. Chem A., 115 (44) (2011) 12307-12314. Available: https://doi.org/10.1021/jp204442e
[22] S. Janecek, E. Krotscheck, M. Liebrecht, R. Wahl, Structure of Mg n and Mg n+ clusters up to n= 30. Eur. Phys. J. D., 63 (3) (2011) 377-390. Available: https://doi.org/10.1140/epjd/e2011-10694-2
[23] A. Köhn, F. Weigend, R. Ahlrichs, Theoretical study on clusters of magnesium. Phys. Chem. Chem. Phys., 3 (5) (2001) 711-719. Available: https://doi.org/10.1039/b007869g
[24] A. Lyalin, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size. Phys. Rev. A., 67 (6) (2003) 063203-063215. Available: https://doi.org/10.1103/PhysRevA.67.063203
[25] M. Monteverde, M. Nunez-Regueiro, N. Rogado, K. Regan, M. Hayward, T. He, S. Loureiro, R.J. Cava, Pressure dependence of the superconducting transition temperature of magnesium diboride. Science., 292 (5514) (2001) 75-77. Available: https://doi.org/10.1126/science.1059775
[26] S. Er, G.A. de Wijs, G. Brocks, Tuning the hydrogen storage in magnesium alloys. J. Phys. Chem. Lett., 1 (13) (2010) 1982-1986. Available: https://doi.org/10.1021/jz100386j
[27] R. Nevshupa, J.R. Ares, J.F. FernaĢndez, A. del Campo, E. Roman, Tribochemical decomposition of light ionic hydrides at room temperature. J. Phys. Chem. Lett., 6 (14) (2015) 2780-2785. Available: https://doi.org/10.1021/acs.jpclett.5b00998
[28] G. Barcaro, R. Ferrando, A. Fortunelli, G. Rossi, Exotic supported copt nanostructures: from clusters to wires. J. Phys. Chem. Lett., 1 (1) (2009) 111-115. Available: https://doi.org/10.1021/jz900076m
[29] L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, X.-C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature., 528 (7583) (2015) 539-543. Available: https://doi.org/10.1038/nature16445
[30] J. Yoo, A. Aksimentiev, Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett., 3 (1) (2011) 45-50. Available: https://doi.org/10.1021/jz201501a
[31] J. Akola, K. Rytkönen, M. Manninen, Metallic evolution of small magnesium clusters. Eur. Phys. J. D., 16 (1) (2001) 21-24. Available: https://doi.org/10.1007/s100530170051
[32] E.R. Davidson, R.F. Frey, Density functional calculations for Mg n+ clusters. J. Chem. Phys., 106 (6) (1997) 2331-2341. Available: https://doi.org/10.1063/1.473096
[33] X. Gong, Q. Zheng, Y.-z. He, Electronic structures of magnesium clusters, Phys. Lett. A., 181 (6) (1993) 459-464. Available: https://doi.org/10.1016/0375-9601(93)91150-4
[34] V. Kumar, R. Car, Structure, growth, and bonding nature of Mg clusters, Phys. Rev. B., 44 (15) (1991) 8243-8255. Available: https://doi.org/10.1103/PhysRevB.44.8243
[35] X. Xia, X. Kuang, C. Lu, Y. Jin, X. Xing, G. Merino, A. Hermann, Deciphering the structural evolution and electronic properties of magnesium clusters: an aromatic homonuclear metal Mg17 cluster. J. Phys. Chem. A., 120 (40) (2016) 7947-7954. Available: https://doi.org/10.1021/acs.jpca.6b07322
[36] M.R. Dehghan, S. Ahmadi, Z.M. Kotena, Adsorption behaviors of carbon monoxide (CO) over aromatic magnesium nanoclusters: a DFT study. Structural Chemistry., 32 (1) (2021) 1949-1960. Available: https://doi.org/10.1007/s11224-021-01770-6
[37] S. Zhuiykov, In situ FTIR study of oxygen adsorption on nanostructured RuO 2 thin-film electrode. Ionics., 15 (4) (2009) 507-512. Available: https://doi.org/10.1007/s11581-008-0294-0
[38] F. Gobal, R. Arab, M. Nahali, A comparative DFT study of atomic and molecular oxygen adsorption on neutral and negatively charged PdxCu3− x (x= 0–3) nano-clusters. Journal of Molecular Structure: THEOCHEM., 959 (1-3) (2010) 15-21. Available: https://doi.org/10.1016/j.theochem.2010.07.042
[39] S. Tan, Y. Ji, Y. Zhao, A. Zhao, B. Wang, J. Yang, J. Hou, Molecular oxygen adsorption behaviors on the rutile TiO2 (110)-1× 1 surface: an in situ study with low-temperature scanning tunneling microscopy. J. Am. Chem. Soc., 133 (6) (2011) 2002-2009. Available: https://doi.org/10.1021/ja110375n
[40] F. Tielens, J. Andrés, T.-D. Chau, T.V. de Bocarmé, N. Kruse, P. Geerlings, Molecular oxygen adsorption on electropositive nano gold tips. Chem. Phys. Lett., 421 (4-6) (2006) 433-438. Available: https://doi.org/10.1016/j.cplett.2006.02.006
[41] F. Tielens, J. Andrés, M. Van Brussel, C. Buess-Hermann, P. Geerlings, DFT study of oxygen adsorption on modified nanostructured gold pyramids. J. Phys. Chem. B., 109 (16) (2005) 7624-7630. Available: https://doi.org/10.1021/jp0501897
[42] B. Kang, H. Liu, J.Y. Lee, Oxygen adsorption on single layer graphyne: a DFT study. Phys. Chem. Chem. Phys., 16 (3) (2014) 974-980. Available: https://doi.org/10.1039/C3CP53237B
[43] H.A. Al-Abadleh, V. Grassian, FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir., 19 (2) (2003) 341-347. Available: https://doi.org/10.1021/la026208a
[44] J.-K. Chen, S.-M. Yang, B.-H. Li, C.-H. Lin, S. Lee, Fluorescence quenching investigation of methyl red adsorption on aluminum-based metal–organic frameworks. Langmuir., 34 (4) (2018) 1441-1446. Available: https://doi.org/10.1021/acs.langmuir.7b04240
[45] X.-J. Kuang, X.-Q. Wang, G.-B. Liu, A density functional study on the adsorption of hydrogen molecule onto small copper clusters. J. Chem. Sci., 123 (5) (2011) 743-754. Available: https://doi.org/10.1007/s12039-011-0130-3
[46] Q.-M. Ma, Z. Xie, J. Wang, Y. Liu, Y.-C. Li, Structures, binding energies and magnetic moments of small iron clusters: A study based on all-electron DFT. Solid State Commun., 142 (1-2) (2007) 114-119. Available: https://doi.org/10.1016/j.ssc.2006.12.023
[47] R. Hussain, A.I. Hussain, S.A.S. Chatha, A. Mansha, K. Ayub, Density functional theory study of geometric and electronic properties of full range of bimetallic AgnYm (n+ m= 10) clusters. J. Alloys Compd., 705 (2017) 232-246. Available: https://doi.org/10.1016/j.jallcom.2017.02.008
[48] S.F. Matar, DFT study of hydrogen instability and magnetovolume effects in CeNi. Solid State Sci., 12 (1) (2010) 59-64. Available: https://doi.org/10.1016/j.solidstatesciences.2009.10.003
[49] M.R. Dehghan, S. Ahmadi, Z.M. Kotena, M. Niakousari, A computational study of N2 adsorption on aromatic metal Mg16M;(M= Be, Mg, and Ca) nanoclusters. Journal of Molecular Graphics and Modelling., 105 (2021) 107862. Available: https://doi.org/10.1016/j.jmgm.2021.107862
[50] M.R. Dehghan, S. Ahmadi, Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures (M= Be, Mg, and Ca): A DFT Study. Journal of Optoelectronical Nanostructures., 6 (1) (2021) 1-20. Available:https://dorl.net/dor/20.1001.1.24237361.2021.6.1.1.3
[51] S.J. Mousavi, Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization. JOPN., 5 (4) (2020) 111-122. Available: https://dorl.net/dor/20.1001.1.24237361.2020.5.4.7.8
[52] H. Salehi, Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X= S, Se) compounds. JOPN., 3 (2) (2018) 53-64. Available: https://dorl.net/dor/20.1001.1.24237361.2018.3.2.5.8
[53] M. Askaripour Lahiji, A. Abdolahzadeh Ziabari, Ab–initio study of the electronic and optical traits of Na0. 5Bi0. 5TiO3 nanostructured thin film. JOPN., 4 (3) (2019) 47-58. Available: https://dorl.net/dor/20.1001.1.24237361.2019.4.3.4.6
[54] S.J. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals. JOPN., 2 (4) (2017) 1-18. Available: https://dorl.net/dor/20.1001.1.24237361.2017.2.4.1.1
[55] F. Weinhold, C.R. Landis, Natural bond orbitals and extensions of localized bonding concepts. CHEM EDUC RES PRACT., 2 (2) (2001) 91-104. Available: https://doi.org/10.1039/B1RP90011K
[56] F. BieglerāKönig, J. Schönbohm, Update of the AIM2000āprogram for atoms in molecules. J. Comput. Chem., 23 (15) (2002) 1489-1494. Available: https://doi.org/10.1002/jcc.10085
[57] Y. Fu, T. Lu, Y. Xu, M. Li, Z. Wei, H. Liu, W. Lu, Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized solar cells with near-IR light harvesting. Dyes Pigm., 155 (2018) 292-299. Available: https://doi.org/10.1016/j.dyepig.2018.03.045
[58] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision B.01, (Gaussian, Inc., Wallingford, CT, 2009).
[59] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19 (4) (1970) 553-566. Available: https://doi.org/10.1080/00268977000101561
[60] N.M. O'boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for packageāindependent computational chemistry algorithms. J. Comput. Chem., 29 (5) (2008) 839-845. Available:
[61] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem., 33 (5) (2012) 580-592. Available: https://doi.org/10.1002/jcc.22885
[62] K.-P. Huber, Molecular spectra and molecular structure: IV. Constants of diatomic molecules. Springer Science & Business Media., 2013.
[63] R.D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database. http://srdata. nist. gov/cccbdb. 2006. Available: http://cccbdb.nist.gov/
[64] M. Shahabi, H. Raissi, Molecular dynamics simulation and quantum chemical studies on the investigation of aluminum nitride nanotube as phosgene gas sensor. Journal of Inclusion Phenomena and Macrocyclic Chemistry., 86 (3-4) (2016) 305-322. Available: https://doi.org/10.1007/s10847-016-0664-6
[65] A. Hosseinian, E. Vessally, A. Bekhradnia, S. Ahmadi, P.D.K. Nezhad, Interaction of α-cyano-4-hydroxycinnamic acid drug with inorganic BN nanocluster: A density functional study. J Inorg Organomet Polym Mater., 28 (4) (2018) 1422-1431. Available: https://doi.org/10.1007/s10904-018-0778-y
[66] E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, K. Nejati, Selective detection of cyanogen halides by BN nanocluster: a DFT study. J. Mol. Model., 23 (4) (2017) 1-9. Available:https://doi.org/10.1007/s00894-017-3312-1
[67] K. Nejati, A. Hosseinian, E. Vessally, A. Bekhradnia, L. Edjlali, A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl. Surf. Sci., 422 (2017) 763-768. Available: https://doi.org/10.1016/j.apsusc.2017.06.082
[68] S. Ahmadi, V.M. Achari, H. Nguan, R. Hashim, Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations. J. Mol. Model., 20 (3) (2014) 1-12. Available: https://doi.org/10.1007/s00894-014-2165-0
[69] Z. Zhou, R.G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc., 112 (15) (1990) 5720-5724. Available: https://doi.org/10.1021/ja00171a007
[70] R.G. Pearson, Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem., 54 (6) (1989) 1423-1430. Available: https://doi.org/10.1021/jo00267a034
[71] W. Faust, Explosive molecular ionic crystals. Science., 245 (4913) (1989) 37-42. Available: https://doi.org/10.1126/science.245.4913.37
[72] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 105 (26) (1983) 7512-7516. Available: https://doi.org/10.1021/ja00364a005
[73] R.G. Parr, P.K. Chattaraj, Principle of maximum hardness. J. Am. Chem. Soc., 113 (5) (1991) 1854-1855. Available: https://doi.org/10.1021/ja00005a072
[74] R.G. Pearson, Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc., 107 (24) (1985) 6801-6806. Available: https://doi.org/10.1021/ja00310a009