Nonlinear Energy Exchange between Solitons in Modes of a Silica Few-mode Fiber
Subject Areas : Journal of Optoelectronical NanostructuresSaba Parva 1 , Mohsen Hatami 2
1 - Faculty of Physics, shiraz University of Technology, Shiraz, Iran
2 - Faculty of Physics, shiraz University of Technology, Shiraz, Iran
Keywords: all-optical switching, bright soliton, cross phase modulation, few modes fiber,
Abstract :
Recently soliton propagation in few-mode fiber has been
studied. In this paper, we used commercially few-mode
fiber for investigating the soliton propagation. Three
modes exist in this fiber, by considering polarization, we
have six propagation modes. Initially, we calculate the
propagation mode, effective cross-section, and dispersion
for each mode then soliton propagation in fiber modes with
respect to phase are simulated. The nonlinear effect causes
XPM which affects propagation modes to each other. By
various values of phase, the first maximum energy transfer
between modes is calculated. We find minimum
normalized length 0.66 which equal to a length of 23.3
meters of silica fiber for energy exchange. The energy
exchange can be used as a basis for all-optical switching.
Interestingly, these effects cause energy transfer between
different modes and strongly depend on the phase
difference. So, the results of this simulation can be used to
design all-optical self-switches and all optical logic gates.
[1] G. P. Agrawal , Nonlinear Fiber Optics, 6nd, Academic Press 2019.
[2] G. P. Agrawal, “Fiber-Optic Communication Systems, ” 4nd, Wiley & Sons 2013.
[3] W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibers”, Nat. Commun. 4(1) (2013)1-6.
Available: https://doi.org/10.1364/PRJ.7.000187
[4] L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons”, Opt. Express 23(3) (2015) 3492-3506. Available: https://doi.org/10.1364/OE.23.003492
[5] K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A Barth´el´emy. G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibers”, Nat. Photon. 11(4) (2017)237-241.
Available: https://doi.org/10.1038/nphoton.2017.32
[6] A. S. Ahsan and G. P. Agrawal, “Graded-index solitons in multimode fibers”, Opt. Lett. 43(14) (2018) 3345-3348.
Available: https://doi.org/10.1364/OL.43.003345
[7] D.J. Richardson, J. M. Fini, and L.E. Nelson. “Space-division multiplexing
in optical fibers”, Nat. Photonics7(5) (2013) 354-362. Available: https://doi.org/10.1038/nphoton.2013.94
[8] A. Mafi., “Pulse Propagation in a Short Nonlinear Graded-Index Multimode
Optical Fiber”, Lightwave Technol, 30(17) (2012) 2803-2811.
Available: 10.1109/JLT.2012.2208215
[9] W.H. Renninger, and F.W. Wise, “Optical solitons in graded-index
multimode fibres”, Nat. Commun, 4(1) (2013) 1-6.
Available: https://doi.org/10.1038/ncomms2739
[10] S. Mumtaz, R.J. Essiambre, and G.P. Agrawal, “Nonlinear propagation in
multimode and multicore fibers: Generalization of the manakov equations”,
Lightwave Technol J. 31(3) (2013) 398-406.
Available: 10.1109/JLT.2012.2231401
[11] F. Poletti, and p. Horak, J. Opt, “Description of ultrashort pulse propagation
in multimode optical fibers”, JOSA B 25(10) (2008)1645-1654.
Available: https://doi.org/10.1364/JOSAB.25.001645
[12] G. P. Agrawal and SH. Buch, “Soliton stability and trapping in multimode
fibers”, Optics Letters, 40(2015), 225-228. Available:
Available: https://doi.org/10.1364/OL.40.000225
[13] A. Antikainen, L. Rishøj, B.Tai, S.Ramachandran, G. P. Agrawal, “Fate of
a Soliton in a High Order Spatial Mode of a Multimode Fiber”, Physical
Review Letters122(2) (2019) 023901.
Available: https://doi.org/10.1103/PhysRevLett.122.023901
[14] L. Safaei, M. Borhani zarandi , M. Hatami, "Effect of Relative Phase on the
Stability of Temporal Bright Solitons in a PT- Symmetric NLDC." Journal
of Optoelectronical Nanostructures 3(3) (2018) 37-46.
Available: http://jopn.miau.ac.ir/article_3044.html
[15] M .Dehghani, M. Hatami, A. Gharaati ,. "Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton." Journal of Optoelectronical Nanostructures 6(4) (2021) -.
Available:10.30495/jopn.2022.28937.1236
[16] M. Rezvani, and M. Fathi Sepahvand. "Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations." Journal of Optoelectronical Nanostructures 1(1) (2016) 51-64.
Available: http://jopn.miau.ac.ir/article_1815.html
[17] A. Keshavarz and Z. Abbasi. "Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit." Journal of Optoelectronical Nanostructures 1(1) (2016) 81-90.
Available: http://jopn.miau.ac.ir/article_1817.html
[18] M.A Sharif,. "Temporal Nonlinear Dynamics of Plasmon-Solitons, a Duffing Oscillator-Based Approach." Journal of Optoelectronical Nanostructures 6(1) (2021)87-102. Available: 10.30495/jopn.2021.4542
[19] M. Ilchi-Ghazaani,. "Analysis of Steady-State Brillouin Nonlinearity in High-Power Fiber Lasers." Journal of Optoelectronical Nanostructures 5(3) (2020)1-16. Available: http://jopn.miau.ac.ir/article_4401.html
[20] V. Fallahi, and M. Seifouri. "Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices." Journal of Optoelectronical Nanostructures 4(2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[21] B.E. Saleh and M.C Teich, “Fundamentals of photonics”, 2nd, Wiley, New York, 2007.