Design of NIR-TERS system based on optimized grating on the AFM probe under radial polarized light for detection of molecular sample
Subject Areas : Journal of Optoelectronical NanostructuresMohsen Katebi Jahromi 1 , Rahim Ghayour 2 , Zahra Adelpour 3
1 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
2 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
3 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Keywords: Spectroscopy, AFM, NIR sensor, Plasmon, TERS,
Abstract :
To the best of our knowledge, it is for the first time that
TERS system in near-infrared (NIR) spectrum is
reporting. The current study proposed a most favorable
atomic force microscopy (AFM) tip based on an
incorporated optimal grating structure close to the tip
apex. The optimized M2 factor and the best spatial
resolution are obtained as 5.9× 109 and 8.5 nm
respectively in the NIR range of radiation light. The
results show that the optimized grating can effectively
increase the amount of intensity of electric field and
improve spatial resolution within the nanoslit between the
AFM tip and substrate. The detection sensitivity of
materials can be done by our proposed AFM-TERS
system. The difference between the maximum
enhancement factors that are correlated to several under
test sample molecules show the selectivity potential of
the proposed AFM-TERS system in material detection
topic.
[1] J F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, T. Mei, Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation. Sensors (Basel). 18, (2018) 3841.
Available: https://dx.doi.org/10.3390%2Fs18113841
[2] S. Najjar, D. Talaga, L. Schue, Y. Coffinier, S. Szunerits, R. Boukherroub, L. servant, V. Rodriguez, S. Bonhommeau, Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J. Phys. Chem. C. 118, (2014) 1174–1181. Available: https://www. doi.org/10.1021/jp410963z
[3] X. Wang, D. Zhang, K. Braun, H. J. Egelhaaf, C. J. Brabec, A. J. Meixner, High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications. Adv. Funct. Mater. 20, (2010) 492–499. Available:https://doi.org/10.1002/adfm.200901930
[4] N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J. F. Maguire, M. Green, M. D. Foster, A. P. Sokolov, High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38, (2007) 789–796. Available:10.1002/jrs.1698
[5] Y. Okuno, Y. Saito, S. Kawata, P. Verma. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. Phys. Rev. Lett. 111, (2013) 216101. Available:10.1103/PhysRevLett.111.216101
[6] W. Su, D. Roy, Visualizing graphene edges using tip-enhanced Raman spectroscopy. J. Vac. Sci. Technol B. 31, (2013) 041808. Available: https://doi.org/10.1116/1.4813848
[7] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by Plasmon enhanced Raman scattering. Nature. 498, (2013) 82–86. Available: https://doi.org/10.1038/nature12151
[8] C. Gao, W. Lin, J. Wang, R. Wang, J. Wang. Principle and Application of Tip-enhanced Raman Scattering. Plasmonics. 13, (2018) 1343-1358. Available:10.1007/s11468-017-0638-6
[9] M. Rezvani, M. Fathi Sepahvand, Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations, Journal of Optoelectronical Nanostructures, 1(1), (2016), 51-64. Available:20.1001.1.24237361.2019.4.4.5.9
[10] M. Olyaee, M. Bagher Tavakoli, A. Mokhtari, Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure, Journal of Optoelectronical Nanostructures, 4 (3), (2019), 95-116.
Available: 20.1001.1.24237361.2019.4.3.7.9
[11] R. Petry, N. C. Oliveira, A. C. Alves, A. G. S. Filho, D. S. T. Martinez, G. Hwang, F. A. Sousa, A. J. Paula, Chapter 2-Nanomaterials Properties of Environmental Interest and How to Assess Them. Nanomaterials Applications for Environmental Matrices, Elsevier, (2019) 45-105. Available: https://doi.org/10.1016/B978-0-12-814829-7.00002-1
[12] A. V. Ermushev, B. V. Mchedlishvili, V. A.Oleĭnikov, A. V. Petukhov, Surface Enhancement of Local Optical Fields and the Lightning-Rod Effect. Quantum Elec. 23, (1993), 435–440.
Available: https://doi.org/10.1070/QE1993v023n05ABEH003090
[13] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46(13), (2017) 4042-76. Available: https://doi.org/10.1039/C7CS00238F
[14] M. M. Sartin, H. S. Su, X. Wang, B. Rena, Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J. Phys Chem. 153, (2020)170901-19. Available: https://doi.org/10.1063/5.0027917
[15] K. Bosnick, M. Maillard, J. Jiang, L. Brus. Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals. J. Phys. Chem. B. 107(37), (2003) 9964-9972. Available: https://doi.org/10.1021/jp034632u
[16] V. Fallahi, M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices. Journal of Optoelectronical Nanostructures, 4(2) (2019) 53-68. Available: 20.1001.1.24237361.2019.4.2.5.
[17] M. Katebi Jahromi, R. Ghayour, Z. Adelpour, Modeling electric field increment in the Tip-Enhanced Raman Spectroscopy by using grating on the probe of atomic force nanoscope. Opt Quantum Electron. 53, (2021) 385. Available: http://doi.org/10.1007/s11082-021-03051-2
[18] M. Akhlaghi, F. Emami, Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier, Korean J. Opt. Photon, 17, (2013) 237-241.
Available: https://doi.org/10.3807/JOSK.2013.17.3.237
[19] A. Asrar, M. Yasrebi, Application of Classical Bird Swarm Learning Algorithm as a Method of Optimization in Nanotechnology Systems. Journal of Optoelectronical Nanostructures, 2021; 6(1): 103-126. Available: 10.30495/jopn.2021.4543
[20] F. Emami, M. Akhlaghi, Gain ripple decrement of S-band raman amplifiers. IEEE Photon. Technol. Lett, 24, (2012) 1349 -1352.
Available: https://doi.org/10.1109/LPT.2012.2203591
[21] Richards, E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. Royal soc A: Math Phys. 253, (1959) 358–379.
Available: https://doi.org/10.1098/rspa.1959.0200
[22] Z. Yang, J. Aizpurua, X. Hongxing, Electromagnetic field enhancement in TERS configurations, J. Raman. Spectrosc, 40, (2009) 1343–1348.
Available: http://dx.doi.org/10.1002/jrs.2429
[23] N. Kazemi-Zanjani, S. Vedraine, F. Lagugné-Labarthet, Localized enhancement of electric field in tip enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express. 21(2013), 25271–25276. Available: https://doi.org/10.1364/OE.21.025271
[24] Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics. 1, (2009) 1-57.
Available: https://doi.org/10.1364/AOP.1.000001
[25] B. Richards, E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. Royal soc A: Math Phys. 253, (1959) 358–379.
Available: https://doi.org/10.1098/rspa.1959.0200
[26] F. Lu, W. Zhang, J. Zhang M. Liu, L. Zhang, T. Xue, C. Meng, F. Gao, T. Mei, J. Zhao, Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam, Nanophotonics. 8, (2019) 2303–2311. Available: https://doi.org/10.1515/nanoph-2019-0329
[27] K. S. Youngworth, T. G. Brown, Focusing of high numerical aperture cylindrical-vector beams, opt Express. 7, (2000) 77–87.
Available: https://doi.org/10.1364/OE.7.000077
[28] P. B. Johnson, R. W. Christy, Optical constants of the noble metals. Phys Rev B. 6, (1972), 4370-4379.https://doi.org/10.1103/PhysRevB.6.4370
[29] Hamed Azimi, Seyyed Hamid Ahmadi, Mohammad Reza Manafi, Syed Hossein Hashemi Moosavi, Mostafa Najafi, Development a simple and sensitive method for determination low trace of nickel by local surface plasmon resonance of citrate capped silver nanoparticles, Journal of Optoelectronical Nanostructures, 6(2) (2021), 23-40.
Available: 20.1001.1.24237361.2021.6.2.1.5
[30] L. Y. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, B. Ren, Gold-coated AFM tips for tip enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Opt. Express, 23, (2015) 13804–13813. Available: https://doi.org/10.1364/OE.23.013804
[31] L. Long, J. Chen, H. Yu, Z. Y. Li, Strong optical force of a molecule enabled by the plasmonic nanogap hot spot in a tip-enhanced Raman spectroscopy system. Photonic Res. 8, (2020) 1573-1579.
Available: https://doi.org/10.1364/PRJ.398243
[32] J. Gienger, K. Smuda, R. Müller, M. Bar, J. Neukammer, Refractive index of human red blood cells between 290 nm and 1100 nm determined by optical extinction measurements. Sci. Rep. 9(1), (2019), 4623. Available: https://doi.org/10.1038/s41598-019-38767-5
[33] E. N. Lazareva, V. V. Tuchin, Measurement of refractive index of hemoglobin in the visible/NIR spectral range. J. Biomed. Opt. 23(3), (2018)0350041 -9. Available: https://doi.org/10.1117/1.JBO.23.3.035004
[34] J. R. Warren, J. A. Gordon, On the Refractive Indices of Aqueous Solutions of Urea. J. Phys. Chem. 1, (1966) 297–300.
Available: https://doi.org/10.1021/j100873a507