Data-Driven State Estimation of Carbon Nanotube Field Effect Transistor with Smart RBF Network
Subject Areas : Journal of Optoelectronical NanostructuresHossein Afkhami 1 , Faridoon Shabani Nia 2 , Jamshid Aghaei 3
1 - Department of Mechanical, Electrical and Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Power and Control Engineering, Shiraz University, Shiraz, Iran
3 - Department of Electrical and Electronics Engineering, Shiraz University of
Technology, Shiraz, Iran
Keywords: Modeling, RBF, CNTFET, nonlinear system, state estimation,
Abstract :
Since 1993, Devices based on CNTs have applications
ranging from nanoelectronics to optoelectronics. The
challenging issue in designing these devices is that the
nonequilibrium Green's function (NEGF) method has to
be employed to solve the Schrödinger and Poisson
equations, which is complex and time consuming. In the
present study, a novel smart and optimal algorithm is
presented for fast and accurate modeling of CNT fieldeffect
transistors (CNTFETs) based on an artificial neural
network. A new and efficient way is presented for
incrementally constructing radial basis function (RBF)
networks with optimized neuron radii to obtain the
estimator network. An incremental extreme learning
machine (I-ELM) algorithm is used to train the RBF
network. To ensure the optimal radii for incremental
neurons, this algorithm utilizes a modified version of an
optimization algorithm known as the Nelder-Mead
simplex algorithm. Results confirm that the proposed
approach reduces the network size for faster error
convergence while preserving the estimation accuracy.
[1] H. hashemi madani. M. R. Shayesteh. and M. R. Moslemi. A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures. 6( 1) (2021) 71-86.
Available: https://dx.doi.org/10.30495/jopn.2021.4541
[2] O. Talati Khoei and R. Hosseini. Device and Circuit Performance Simulation of a New Nano-Scaled Side Contacted Field Effect Diode Structure. Journal of Optoelectronical Nanostructures. 4( 3) (2019) 17-32.
Available: https://dorl.net/dor/20.1001.1.24237361.2019.4.3.2.4
[3] H. Faezinia and M. zavvari. Quantum modeling of light absorption in graphene based photo-transistors. Journal of Optoelectronical Nanostructures. 2(1) (2017) 9-20.
Available: https://dorl.net/dor/20.1001.1.24237361.2017.2.1.2.6
[4] A. rezaei. B. Azizollah-Ganji. and M. Gholipour. Effects of the Channel Length on the Nanoscale Field Effect Diode Performance. Journal of Optoelectronical Nanostructures. 3( 2) (2018) 29-40.
Available: https://dorl.net/dor/20.1001.1.24237361.2018.3.2.3.6
[5] A. Raychowdhury. A. Keshavarzi. J. Kurtin. V. De. and K. Roy. Carbon Nanotube Field-Effect Transistors for High-Performance Digital Circuits. IEEE Transactions on Electron Devices. 53(11) (2006) 2711-2717.
Available: https://doi.org/10.1109/TED.2006.883816
[6] S. Jogad. H. I. Alkhammash. N. Afzal. and S. A. Loan. CNTFET-based active grounded inductor using positive and negative current conveyors and applications. International Journal of Numerical Modelling. 34(5) (2021) 2895.
available: https://doi.org/10.1002/jnm.2895
[7] S. O. Koswatta. D. E. Nikonov. and M. S. Lundstrom. Computational study of carbon nanotube p-i-n tunnel FETs. Presented at IEEE International Electron Devices Meeting. (2005).
Available:https://doi.org/10.1109/IEDM.2005.1609396
[8] M. Diez-Garcia. A. Vincent. N. Izard. and D. Querlioz. Monte Carlo simulations of carbon nanotube networks for optoelectronic applications. Presented at IEEE International Electron Devices Meeting. (2014).
Available:https://doi.org/10.1109/IEDM.2005.1609396
[9] J. Guo. S. O. Koswatta. N. Neophytou. and M. Lundstrom. Carbon Nanotube Field-Effect Transistors. International Journal of High Speed Electronics and Systems. 16(04) (2006) 897-912. Available: https://doi.org/10.1142/S0129156406004077
[10] S. Dehghani. Numerical Study of Long Channel Carbon Nanotube Based Transistors by Considering Variation in CNT Diameter. Journal of Nano Research. 61 (2020) 78-87.
Available:https://doi.org/10.4028/www.scientific.net/JNanoR.61.78
[11] K. Bikshalu. V. S. K. Reddy. P. C. S. Reddy. and K. V. Rao. High-performance Carbon Nanotube Field Effect Transistors with High k Dielectric Gate Material. Proceedings. 2(9) (2015) 4457-4462.
Available:https://doi.org/10.1016/j.matpr.2015.10.048
[12] R. Martel. T. Schmidt. H. R. Shea. T. Hertel. and P. Avouris. Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors. Applied Physics Letters. 73 (1998) 10-26.
Available:https://doi.org/10.1063/1.122477
[13] S. Datta. Nanoscale device modeling: the Green’s function method. Superlattices and Microstructures. 28( 4) (2000) 253-278.
Available:https://doi.org/10.1006/spmi.2000.0920
[14] M. Akbari Eshkalak and R. Faez. A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor. Journal of Optoelectronical Nanostructures. 2(3) (2017) 1-12.
Available:https://doi.org/10.1109/DRC.2010.5551931
[15] M. Jafari. Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method. Journal of Optoelectronical Nanostructures. 1(2) (2016) 57-68.
Available:https://dorl.net/dor/20.1001.1.24237361.2016.1.2.6.5
[16] D. L. John. Simulation studies of carbon nanotube field-effect transistors. Text, 2006. Available:http://hdl.handle.net/2429/18554
[17] J. Guo. S. Datta. M. s. Lundstrom. and M. Anantram. Toward Multiscale Modeling of Carbon Nanotube Transistors. International Journal for Multiscale Computational Engineering 2 (2004) 257-276.
Available:http://dx.doi.org/10.1615/IntJMultCompEng.v2.i2.60
[18] J. Appenzeller. L. Yu-Ming. J. Knoch. C. Zhihong. and P. Avouris. Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design. IEEE Transactions on Electron Devices. 52(12) (2005) 2568-2576.
Available:https://doi.org/10.1109/TED.2005.859654
[19] Z. Ahangari. Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor. Journal of Optoelectronical Nanostructures. 5( 2) (2020) 1-12.
Available:https://dorl.net/dor/20.1001.1.24237361.2020.5.2.1.8
[20] J. Deng and H. P. Wong. A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region. IEEE Transactions on Electron Devices. 54 (12) (2007) 3186-3194.
Available:https://doi.org/10.1109/TED.2007.909043
[21] K. Pourchitsaz and M. R. Shayesteh. Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET). Journal of Optoelectronical Nanostructures. 4(1) (2019) 51-66.
Available:https://dorl.net/dor/20.1001.1.24237361.2019.4.1.4.2
[22] I. Hassaninia. M. H. Sheikhi. and Z. Kordrostami. Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electronics. 52(6) (2008) 980-985.
Available:https://doi.org/10.1016/j.sse.2008.01.021
[23] M. Hayati. A. Rezaei. and M. Seifi. CNT-MOSFET modeling based on artificial neural network: Application to simulation of nanoscale circuits. Solid-State Electronics. 54 (2010) 52-57.
Available:https://doi.org/10.1016/j.sse.2009.09.027
[24] R. Abdollahzadeh Badelbo. F. Farokhi. and A. Kashaniniya. Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks. International Journal of Smart Electrical Engineering. 2(4). (2013) 217-222.
Available:https://dorl.net/dor/20.1001.1.22519246.2013.02.4.5.4
[25] C. Maneux et al.. Multiscale simulation of carbon nanotube transistors. Solid-State Electronics. 89 (2013) 26-67.
Available:https://doi.org/10.1016/j.sse.2013.06.013
[26] T. Chu. N. Thuy. T. Tran. T. Huyen. and A. T. Mai. Carbon Nanotube Field-Effect Transistor for DNA Sensing. Journal of Electronic Materials. 46 (2017) 01-05.
Available:https://link.springer.com/article/10.1007/s11664-016-5238-2
[27] S. Koswatta. M. s. Lundstrom. M. Anantram. and D. Nikonov. Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Applied Physics Letters. 87 (2005) 253107-253107.
Available:http://dx.doi.org/10.1063/1.2146065
[28] S. Datta, Atom to Transistor, in Quantum Transport. Cambridge: Cambridge University Press, 2005.
Available:https://doi.org/10.1017/CBO9781139164313
[29] J. Guo and M.s. Lundstrom, Device Simulation of SWNT-FETs. 2009, 107-131.
Available:https://link.springer.com/chapter/10.1007/978-0-387-69285-2_5
[30] Y. Sun et al.. Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosensors and Bioelectronics. 137 (2019) 255-262.
Available:https://doi.org/10.1016/j.bios.2019.04.054
[31] P. Reiner and B. M. Wilamowski. Efficient incremental construction of RBF networks using quasi-gradient method. Neurocomputing. 150 (2015) 349-356.
Available:https://doi.org/10.1016/j.neucom.2014.05.082
[32] G.-B. Huang. L. Chen. and C.-K. Siew. Universal approximation using incremental constructive feedforward networks with random hidden nodes. Trans. Neur. Netw.. 17( 4) (2006) 879-892.
Available:http://dx.doi.org/10.1109/TNN.2006.875977
[33] Y. Weng. R. Negi. and M. D. Ilić. A search method for obtaining initial guesses for smart grid state estimation. Presented at 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm). (2012).
Available:https://doi.org/10.1109/SmartGridComm.2012.6486051
[34] J. Lagarias. J. Reeds. M. Wright. and P. Wright. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization. 9(1) (1998) 112-147.
Available:http://dx.doi.org/10.1137/S1052623496303470
[35] N. D. Pham. Improved Nelder Mead’s Simplex Method and Applications. Doctor of Philosophy. Auburn 2012.
Available:http://hdl.handle.net/10415/2985