Electrocatalytic Determination of Captopril on Gold Nanoparticle-Modified Carbon Paste Electrode.
Subject Areas : Journal of Optoelectronical NanostructuresMohamad Ali Zare 1 * , Omran Moradlou 2 , Behjat Tahmasebi 3 , Maryam Iranpour 4 , Parisa Farashi 5
1 - Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Chemistry, College of Sciences, Alzahra University, Tehran, Iran
3 - Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
4 - Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
5 - Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
Keywords: Electrochemical, Determination, Captopril, Gold Nanoparticle,
Abstract :
The electrochemical behavior of captopril at the surface of a carbon-paste electrode (CPE) modified with gold nanoparticles (GNPs) is described. The prepared electrode shows an excellent electrocatalytic activity toward the oxidation of captopril, which is leading to marked considerable improvement of sensitivity. Whereas at the surface of unmodified electrode an electrochemical activity for captopril cannot be observed, a very sharp anodic wave with an anodic peak potential about 1.0V (versus Ag/AgCl) is obtained using the prepared modified electrode. Captopril oxidation on CPE/GNPs proceeds at pH between 4.0 and 10.0. Under the optimized conditions, the electrocatalytic oxidation peak current of captopril showed two linear dynamic ranges with a detection limit of 8.28×10-2 µM captopril. The linear calibration range was 1.14-16.98 and 21.49-62.1 µM using amperometric. Finally, the sensor was examined as a selective, simple, and precise new electrochemical sensor for the determination of captopril in pharmaceutical samples including tablets and satisfactory results were obtained.
[1] M.M. Tuckerman, Analytical profiles of drug substances, Vol. 11. Edited
by Klaus Florey, Academic Press, 111 Fifth Avenue, New York, NY
10003. 1982. 665 pp. 15 × 23 cm. Price $39.00, J. Pharm. Sci. 72 (1983)
582. doi:10.1002/jps.2600720535.
[2] A.O. Nur, J.S. Zhang, Recent progress in sustained/controlled oral
delivery of captopril: an overview, Int. J. Pharm. 194 (2000) 139–146.
doi:https://doi.org/10.1016/S0378-5173(99)00362-2.
[3] M. Guivernau, F. Armijo, R. Rosas, Role of sulfhydryl groups in the
stimulatory effect of captopril on vascular prostacyclin synthesis., Eur. J.
Pharmacol. 198 (1991) 1–6. doi:10.1016/0014-2999(91)90554-4.
[4] N. Aykin, R. Neal, M. Yusof, N. Ercal, Determination of captopril in
biological samples by high-performance liquid chromatography with
ThioGloTM3 derivatization, Biomed. Chromatogr. 15 (2001) 427–432.
doi:10.1002/bmc.95.
[5] A.M. Pimenta, A.N. Araújo, M.C.B.S.M. Montenegro, Sequential
injection analysis of captopril based on colorimetric and potentiometric
detection, Anal. Chim. Acta. 438 (2001) 31–38.
doi:https://doi.org/10.1016/S0003-2670(00)01307-6.
[6] T. Mirza, H.S.I. Tan, Determination of captopril in pharmaceutical tablets
by anion-exchange HPLC using indirect photometric detection; a study in
systematic method development, J. Pharm. Biomed. Anal. 25 (2001) 39–
52. doi:https://doi.org/10.1016/S0731-7085(00)00462-3.
[7] A.M. El-Brashy, Titrimetric determination of captopril in dosage forms.,
Acta Pharm. Hung. 65 (1995) 91–93.
https://europepmc.org/article/med/7572189.
[8] P. Pourhakkak, M.A. Karimi, H. Tavallali, P. Pourhakkak, M. Mazloum
Ardakani, A New Potentiometric Sensor for Rapid Determination of
Captopril in Pharmaceutical Formulation and Biological Samples, Iran. J.
Anal. Chem. (2022). https://doi.org/10.30473/ijac.2022.63786.1234.
[9] P.T. Lee, R.G. Compton, Precursor modified electrodes: electrochemical
detection of captopril, Electroanalysis. 27 (2015) 2286–2294.
https://doi.org/10.1002/elan.201500093.
[10] R.A. Soomro, M.M. Tunesi, S. Karakus, N. Kalwar, Highly sensitive
electrochemical determination of captopril using CuO modified ITO
electrode: the effect of in situ grown nanostructures over signal
sensitivity, RSC Adv. 7 (2017) 19353–19362. DOI: 10.1039/C7RA01538K
[11] A. Ghosh, A.B. Pawar, T. Chirmade, S.M. Jathar, R. Bhambure, D.
Sengupta, A.P. Giri, M.J. Kulkarni, Investigation of the Captopril–Insulin
Interaction by Mass Spectrometry and Computational Approaches
Reveals that Captopril Induces Structural Changes in Insulin, ACS
Omega. 7 (2022) 23115–23126. https://doi.org/10.1021
/acsomega.2c00660
[12] Z.S. Li, H.N. Qian, T.Y. Fan, Preparation and in vitro evaluation of fused
deposition modeling 3D printed compound tablets of captopril and
hydrochlorothiazide, Beijing Da Xue Xue Bao. Yi Xue Ban= J. Peking
Univ. Heal. Sci. 54 (2022) 572–577. https://doi.org/10.19723/j.issn.1671-
167x.2021.02.020.
[13] S.B. Simanjuntak, M.J. Kalalo, T. Hebber, T.E. Tallei, Fatimawali,
Angiotensin converting enzyme inhibitors from Abelmoschus manihot
(L.) Medik leaves: A molecular docking study, in: AIP Conf. Proc., AIP
Publishing LLC, 2022: p. 70002. https://doi.org/10.1063/5.0104277.
[14] J.A. Badejo, O.S. Michael, M.O. Adetona, O. Abdulmalik, E. Agbebi,
E.O. Iwalewa, O.S. Fagbemi, Mechanisms of anti-hypertensive activity of
methanol leaf extract and fractions of Persea americana Mill.(Lauraceae)
in rats, Niger. J. Pharm. Res. 18 (2022) 63–74.
https://www.ajol.info/index.php/njpr/article/view/228604
[15] I. Giangrieco, M. Tamburrini, L. Tuppo, M.S. Pasquariello, M.A.
Ciardiello, Healthy biological activities in legume flours from industrial
cooking, Food Biosci. 48 (2022) 101743.
https://doi.org/10.1016/j.fbio.2022.101743
[16] L.B. Kuntze, R.C. Antonio, T.C. Izidoro‐Toledo, C.A. Meschiari, J.E.
Tanus‐Santos, R.F. Gerlach, Captopril and Lisinopril Only Inhibit Matrix
Metalloproteinase‐2 (MMP‐2) Activity at Millimolar Concentrations,
Basic Clin. Pharmacol. Toxicol. 114 (2014) 233–239. https://doi.org/
10.1111/bcpt.12151.
[17] A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive study on
the electrochemical advanced oxidation of antihypertensive captopril in
different cells and aqueous matrices, Appl. Catal. B Environ. 277 (2020)
119240. https://doi.org/10.1016/j.apcatb.2020.119240.
[18] M. Skowron, W. Ciesielski, Spectrophotometric determination of methimazole, D-penicillamine, captopril, and disulfiram in pure form and
drug formulations, J. Anal. Chem. 66 (2011) 714–719. https://link.
springer.com/article/10.1134/S1061934811080132.
[19] B. Li, Z. Zhang, M. Wu, Flow-injection chemiluminescence
determination of captopril using on-line electrogenerated silver (II) as the
oxidant, Microchem. J. 70 (2001) 85–91. https://doi.org/10.1016/S0026-
265X(01)00090-X.
[20] M. Ghazi-Khansari, A. Mohammadi-Bardbori, Captopril ameliorates
toxicity induced by paraquat in mitochondria isolated from the rat liver,
Toxicol. Vitr. 21 (2007) 403–407. https://doi.org/10.1016/j.tiv.2006.10.
001.
[21] A.A. Ensafi, H. Karimi-Maleh, M. Ghiaci, M. Arshadi, Characterization
of Mn-nanoparticles decorated organo-functionalized SiO2–Al2O3
mixed-oxide as a novel electrochemical sensor: application for the
voltammetric determination of captopril, J. Mater. Chem. 21 (2011)
15022–15030. doi:10.1039/C1JM11909E.
[22] M. Safaei, H. Beitollahi, M.R. Shishehbore, S. Tajik, R. hosseinzadeh,
Electrocatalytic determination of captopril using a carbon paste electrode
modified with N-(ferrocenyl-methylidene)fluorene-2-amine and
graphene/ZnO nanocomposite, J. Serbian Chem. Soc. Vol 84, No 2
(2019)DO - 10.2298/JSC180414095S . (2019). https://shd-pub.org.rs/
index.php/JSCS/article/view/6772.
[23] M.B. Gholivand, M. Khodadadian, Simultaneous Voltammetric
Determination of Captopril and Hydrochlorothiazide on a
Graphene/Ferrocene Composite Carbon Paste Electrode, Electroanalysis.
25 (2013) 1263–1270. doi:10.1002/elan.201200665.
[24] H. Bagheri, H. Karimi-Maleh, F. Karimi, S. Mallakpour, M. Keyvanfard,
Square wave voltammetric determination of captopril in liquid phase
using N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified ZnO/CNT
carbon paste electrode as a novel electrochemical sensor, J. Mol. Liq. 198
(2014) 193–199. doi:https://doi.org/10.1016/j.molliq.2014.06.027.
[25] W. Zheng, Y.F. Zheng, K.W. Jin, N. Wang, Direct electrochemistry and
electrocatalysis of hemoglobin immobilized in TiO2 nanotube films,
Talanta. 74 (2008) 1414–1419. doi:https://doi.org/10.1016/j.talanta.2007
.09.017.
[26] H. Beitollahi, S. Ghofrani Ivari, R. Alizadeh, R. Hosseinzadeh, Preparation, Characterization and Electrochemical Application of ZnO-
CuO Nanoplates for Voltammetric Determination of Captopril and
Tryptophan Using Modified Carbon Paste Electrode, Electroanalysis. 27
(2015) 1742–1749. doi:10.1002/elan.201500016.
[27] H. Beitollahi, M.A. Taher, M. Ahmadipour, R. Hosseinzadeh,
Electrocatalytic determination of captopril using a modified carbon
nanotube paste electrode: Application to determination of captopril in
pharmaceutical and biological samples, Measurement. 47 (2014) 770–
776. doi:https://doi.org/10.1016/j.measurement.2013.10.001.
[28] B. Rezaei, S. Damiri, Voltammetric behavior of multi-walled carbon
nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system
as a sensor for determination of captopril, Sensors Actuators B Chem. 134
(2008) 324–331. https://doi.org/10.1016/j.snb.2008.05.004.
[29] A.A. Ensafi, M. Monsef, B. Rezaei, H. Karimi-Maleh, Electrocatalytic
oxidation of captopril on a vinylferrocene modified carbon nanotubes
paste electrode, Anal. Methods. 4 (2012) 1332–1338. https://pubs.rsc.org
/en/content/articlelanding/2012/ay/c2ay05815d/unauth.
[30] H. Bahramipur, F. Jalali, Voltammetric determination of captopril using
chlorpromazine as a homogeneous mediator, Int. J. Electrochem. 2011
(2011). https://doi.org/10.4061/2011/864358.
[31] H. Karimi-Maleh, A.A. Ensafi, A.R. Allafchian, Fast and sensitive
determination of captopril by voltammetric method using
ferrocenedicarboxylic acid modified carbon paste electrode, J. Solid State
Electrochem. 14 (2010) 9. https://link.springer.com/article/10.1007/
s10008-008-0781-2.
[32] H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, A novel
voltammetric sensor employing zinc oxide nanoparticles and a new
ferrocene-derivative modified carbon paste electrode for determination of
captopril in drug samples, Anal. Methods. 8 (2016) 1780–1788. https://
doi.org/10.1039/C5AY03284A.
[33] R.-I. Stefan, J.K.F. van Staden, H.Y. Aboul-Enein, Amperometric
biosensors/sequential injection analysis system for simultaneous
determination of S-and R-captopril, Biosens. Bioelectron. 15 (2000) 1–5.
https://doi.org/10.1016/S0956-5663(99)00075-5.