Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N / GaN Multiple Quantum Well Solar Cells
Subject Areas : Journal of Optoelectronical NanostructuresRajab yahyazadeh 1 , zahra hashempour 2
1 - Department of Physics, Khoy branch, Islamic Azad University, Khoy, Iran
2 - Department of Physics, Khoy branch, Islamic Azad University, Khoy, Iran
Keywords: Solar Cell, Hydrostatic Pressure, Optical Absorption, Multi-Quantum Well,
Abstract :
The present study was conducted to investigate current density of
0.3 0.7 Al Ga N/ GaN multiple quantum well solar cell (MQWSC) under hydrostatic
pressure. The effects of hydrostatic pressure were taken into account to measure
parameters of 0.3 0.7 Al Ga N/ GaN MQWSC, such as interband transition energy, electronhole
wave functions, absorption coefficient, and dielectric constant. Finite-difference
method (FDM) was used to acquire energy eigenvalues and their corresponding
eigenfunctions of 0.3 0.7 Al Ga N/ GaN MQW and hole eigenstates were calculated through
a 66 k.p method under an applied hydrostatic pressure. It was found that the depth of
the quantum wells, bandgaps, band offset, the electron, and hole density increases with
the hydrostatic pressure. Also, as the pressure increases, the electron and hole wave
functions will have less overlap, the amplitude of the absorption coefficient increases,
and the binding energy of the excitons decreases. Our results showed that a change in
the pressure up to 10 GPa caused absorption coefficients҆ peaks of light and heavy holes
to shift to low wavelengths of up to 32 nm, which in turn decreased short-circuit current
density and increased open circuit voltage.
[1] R. Chu. GaN power switches on the rise: Demonstrated benefits and
unrealized potentials. Appl. Phys. Lett. 116 (2020) 090502.
[2] G. Hu, L. Lib, Y. Zhang. Two-dimensional electron gas in piezotronic
devices. Nano Energy. 59 (2019) 667–673.
[3] R. Yahyazadeh, Zahra hashempour, Effects of Hydrostatic Pressure and
Temperature on the AlGaN/GaN High Electron Mobility Transistors.
Journal of Interfaces, Thin films, and Low dimensional systems. 2(2)
(2019) 183-194.
[4] R Yahyazadeh, Z. Hashempour. Numerical Optimization for Source-Drain
Channel Resistance of AlGaN/GaN HEMTS. Journal of Science and
technology. 11(1) (2019) 1-9.
[5] A. Horri, S. Z. Mirmoeini. Analysis of Kirk Effect in Nanoscale Quantum
Well Heterojunction Bipolar Transistor Laser. Journal of Optoelectronical
Nanostructures. 5(2) (2020) 25-38.
98 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
[6] C. M. Duque, A. L. Morales, M. E. Mora-Ramos, C. A. Duque. Excitonrelated
21optical properties in zinc-blende GaN/InGaN quantum wells
under hydrostatic pressure, Physica Status Solidi (b). 252 (2015) 670.
[7] Z.H. Zhang, J.H. Yuan, K.X. Guo. The Combined Influence of Hydrostatic
Pressure and Temperature on Nonlinear Optical Properties of
0.3 0.7 Al Ga As /GaAs Morse Quantum Well in the Presence of an Applied
Magnetic Field. Materials, 11 (2018) 668.
[8] W. Bardyszewski, S.P. Lepkowski, H. Teisseyre, Pressure Dependence of
Exciton Binding Energy in GaN/AlxGa1-xN Quantum Wells. Acta Physica
Polonica A, 119(5) (2011) 663.
[9] A.Asgari , Kh.Khalili. Temperature dependence of InGaN/GaN multiple
quantum well based high efficiency solar cell. Solar Energy Materials&
SolarCells, 95 (2011) 3124.
[10] M. Cheraghizade. Optoelectronic Properties of PbS Films: Effect of
Carrier Gas. Journal of Optoelectronical Nanostructures. 4(2) (2019) 1-12.
[11] P. J. Stevens, M. Whitehea, G. Parry, K. Woobridge. Computer Modeling
of the Electric Field Dependent Absorption Spectrum of Multiple Quantum
Well Material. IEEE Journal of Quantum Electronics. 24 (1988) 2007.
[12] Bi. Chouchen, M. H. Gazzah, A. Bajahzar, Hafedh Belmabrouk, Numerical
Modeling of the Electronic and Electrical Characteristics of InGaN/GaNMQW
Solar Cells, Materials. 12 (2019) 1241.
[13] R. Belghouthi, J. P. Salvestrini, M. H. Gazzeh, and C. Chevallier.
Analytical modeling of polarization effects in InGaN double heterojunction
p-i-n solar cells, Superlattices and Microstructures. 100 (2016)
168.
[14] Bi. Chouchen et al., Numerical modeling of InGaN/GaN p-i-n solar cells
under temperature and hydrostatic pressure effects, AIP Advances 9
(2019) 045313.
Numerical Modeling of Electronic and Electrical Characteristics of Multiple Quantum … * 99
[15] X. Huang, Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano, 10(5) (2016) 5145.
[16] O. Ambacher, A. B Foutz, J Smart, J. R Shealy, N. G Weimann, K Chu, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys, 87 (2000) 334.
[17] S. Z. H. Minabi, A. Keshavarz, A. Gharaati. The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles. Journal of Optoelectronical Nanostructures.1(3) (2016) 62-75.
[18] O. Ambacher, J. Majewski, C. Miskys, et al. Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter, 14 (2002) 3399.
[19] Z. J. Feng, Z. J. Cheng, and H. Yue, Temperature dependence of Hall electron density of GaN-based heterostructures. Chinese Physics. 13 (2004) 1334.
[20] V. Fiorentini, F. Bernardini, and O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures, Appl. Phys. Lett, 80 (2002) 1204.
[21] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, and E. R. Weber. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. J. Appl. Phys. 85 (1999) 2385.
[22] K.J Bala, A. J Peter, and C. W Lee. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring. Chemical Physics. 495 (2017) 42.
[23] M. Yang et al., Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs, IEEE Trans. Electron Devices, 63 (2016) 1471.
[24] I. Vurgaftman, J. R Meyer, L. R. R Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys, 89 (2001) 5815.
100 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
[25] S. Z. H. Minabi, A. Keshavarz, A. Gharaati. The effect of temperature on
optical absorption cross section of bimetallic core-shell nano particles.
Journal of Optoelectronical Nanostructures.1(3) (2016) 62-75.
[26] K.H. Yoo, L.R.Ram-Mohan, D.F.Nelson, Effect of nanparabolicity in
AlxGa1xN /GaAs semiconductor quantum well. Phys. Rev. B. 39 (2089) 809.
[27] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N.
W. Cheung, E. R. Weber. Reduction of the energy gap pressure coefficient
of GaN due to the constraining presence of the sapphire substrate. J. Appl.
Phys, 85 (1999) 2385.
[28] B. Jogai, Influence of surface states on the two-dimensional electron gas in
AlGaN/GaN heterojunction field-effect transistors. Journal of Applied
Physics, 93 (2003) 1631.
[29] B. Jogai, Parasitic Hole Channels in AlGaN/GaN Heterojunction
Structures, phys. stat. sol. (b). 233(3) (2002) 506.
[30] B. Chouchen et al. Numerical Modeling of the Electronic and Electrical
Characteristics of InGaN/GaN-MQW Solar Cells. Materials. 12 (2019)
1241.
[31] N.G. Anderson, Ideal theory of quantum well solar cells, J. Appl. Phys, 78
(1995) 1850.
[32] Y. Zhang, Y. Yang, Z.L. Wang. Piezo-phototronics effect on
nano/microwire solar cells. Energy Environ. Sci, 5 (2012) 6850.
[33] Z. Podlipskas et al. The detrimental effect of AlGaN barrier quality on
carrier dynamics in AlGaN/GaN interface. Scientific Reports. 9 (2019)
17346.
[34] Handbook of Nitride Semiconductors and Devices: GaN-Based Optical and
Electronic Devises, 3rd ed., Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, 2009, 767-810.
Numerical Modeling of Electronic and Electrical Characteristics of Multiple Quantum … * 101
[35] J. Nelson, Thin Film solar cell, The Physics of Solar Cells, 5th ed. Imperial College Press, London, UK: WC2H 9HC, 2003, 211-251.
[36] Q. Deng et al., An investigation on InxGa1-xN/GaN multiple quantum well solar cells, J. Phys. D Appl. Phys. 44 (2011) 265103.
[37] Y. Sefidgar, H. R. Saghai, H. G. K. Azar. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures.4(2) (2019) 84-102.