Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures (M=Be, Mg, and Ca): A DFT Study
Subject Areas : Journal of Optoelectronical NanostructuresMahmood Reza Dehghan 1 , sara ahmadi 2
1 - Depatment of Chemistry,Firoozabad Branch,Islamic Azad University,Firoozabad,Iran
2 - Depatment of Chemistry,Firoozabad Branch,Islamic Azad University,Firoozabad,Iran
Keywords: DFT, Adsorption, Carbon monoxide, Electron Properties, Magnesium Nanostructure,
Abstract :
در این مطالعه ، محاسبات تئوری تابعی چگالی (DFT) برای
بررسی جذب مولکول CO (از طریق اتمهای O و C) در سطح نانوساختارهای Mg16M -
O2 (M = Be ، Mg و Ca) انجام شد ، M اتم مرکزی ، در
سطح نظریه CAM-B3LYP / 6- 311 + g (d). خصوصیات الکترونیکی نانوساختارهای Mg16M-O2 به
طور قابل توجهی تحت تأثیر جذب مولکول CO قرار گرفت. تجزیه و تحلیل NBO
انتقال بار از مولکول CO جذب شده به نانوساختار Mg16M-O2 را نشان داد. بر اساس
انرژی های جذب و آنتالپی ، یک
فرآیند شیمی جذب ترمودینامیکی مطلوب پیش بینی شد. مقادیر جذب و انرژی اتصال مولکول CO (از طریق
هر دو اتم C و C) بیش از نانوساختارهای Mg16M-O2 با افزایش
شعاع اتمی اتم مرکزی در ساختارهای نانو از طریق یک
واکنش شیمیایی و گرمازا ، . کمپلکس Mg16CaO2 ― CO با کمترین فاصله پیوند و
بیشترین انرژی جذب بیشترین تمایل به جذب
مولکول مونوکسیدکربن را نشان می دهد
[1] A. Lyalin, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size. Phys. Rev. A. [Online]. 67(6) (2003, Jun.) 063203-063215. Available: https://doi.org/10.1103/PhysRevA.67.063203
[2] J. Jellinek, P.H. Acioli, Magnesium clusters: structural and electronic properties and the size-induced nonmetal-to-metal transition. J. Phys. Chem. A. [Online]. 106(45) (2002, Oct.) 10919-10925. Available: https://doi.org/10.1021/jp020887g
[3] I. Heidari, S. De, S. Ghazi, S. Goedecker, D. Kanhere, Growth and Structural Properties of Mg N (N= 10–56) Clusters: Density Functional Theory Study. J. Phys. Chem. A. [Online]. 115(44) (2011, Sep.) 12307-12314. Available: https://doi.org/10.1021/jp204442e
[4] S. Janecek, E. Krotscheck, M. Liebrecht, R. Wahl, Structure of Mg n and Mg n+ clusters up to n= 30. Eur. Phys. J. D. [Online]. 63 (2011, Jun.) 377-390. Available: https://doi.org/10.1140/epjd/e2011-10694-2
[5] A. Köhn, F. Weigend, R. Ahlrichs, Theoretical study on clusters of magnesium. Phys. Chem. Chem. Phys. [Online]. 3 (2001, Jan.) 711-719. Available: https://doi.org/10.1039/B007869G
[6] M. Monteverde, M. Nunez-Regueiro, N. Rogado, K. Regan, M. Hayward, T. He, S. Loureiro, R.J. Cava, Pressure dependence of the superconducting transition temperature of magnesium diboride. Science. [Online]. 292(5514) (2001, Apr.) 75-77. Available: https://doi.org/10.1126/science.1059775
[7] S. Er, G.A. de Wijs, G. Brocks, Tuning the hydrogen storage in magnesium alloys. J. Phys. Chem. Lett. [Online]. 1(13) (2010, Jun.) 1982-1986. Available: https://doi.org/10.1021/jz100386j
[8] R. Nevshupa, J.R. Ares, J.F. Fernández, A. del Campo, E. Roman, Tribochemical decomposition of light ionic hydrides at room
14 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
temperature. J. Phys. Chem. Lett. [Online]. 6(14) (2015, Jun.) 2780-2785. Available: https://doi.org/10.1021/acs.jpclett.5b00998
[9] G. Barcaro, R. Ferrando, A. Fortunelli, G. Rossi, Exotic supported copt nanostructures: from clusters to wires. J. Phys. Chem. Lett. [Online]. 1(1) (2009, Nov.) 111-115. Available: https://doi.org/10.1021/jz900076m
[10] L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, X.-C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles, Nature, 528 (2015, Dec.) 539-543. Available: https://doi.org/10.1038/nature16445
[11] J. Yoo, A. Aksimentiev, Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. [Online]. 3(1) (2011, Dec) 45-50. Available: https://doi.org/10.1021/jz201501a
[12] J. Jellinek, P.H. Acioli, Magnesium Clusters: Structural and Electronic Properties and the Size-Induced Nonmetal-to-Metal Transition. J. Phys. Chem. A. [Online]. 107(10) (2003, Feb.) 1670-1670. Available: https://doi.org/10.1021/jp0301655
[13] J. Akola, K. Rytkönen, M. Manninen, Metallic evolution of small magnesium clusters. Eur. Phys. J. D. [Online]. 16 (2001, Oct.) 21-24. Available: https://doi.org/10.1007/s100530170051
[14] E.R. Davidson, R.F. Frey, Density functional calculations for Mg n+ clusters. J. Chem. Phys. [Online]. 106(6) (1997, Jun.) 2331-2341. Available: https://doi.org/10.1063/1.473096
[15] X. Gong, Q. Zheng, Y.-z. He, Electronic structures of magnesium clusters. Phys. Lett. [Online]. A, 181(6) (1993, Nov.) 459-464. Available: https://doi.org/10.1016/0375-9601(93)91150-4
[16] V. Kumar, R. Car, Structure, growth, and bonding nature of Mg clusters. Phys. Rev.B. [Online]. 44(15) (1991, Oct) 8243-8255. Available: https://doi.org/10.1103/PhysRevB.44.8243
[17] X. Xia, X. Kuang, C. Lu, Y. Jin, X. Xing, G. Merino, A. Hermann, Deciphering the structural evolution and electronic properties of magnesium clusters: an aromatic homonuclear metal Mg17 cluster.
Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures … * 15
J. Phys. Chem. A. [Online]. 120(40) (2016, Sep.) 7947-7954. Available: https://doi.org/10.1021/acs.jpca.6b07322
[18] J. Lv, Y. Wang, L. Zhu, Y. Ma, Particle-swarm structure prediction on clusters. J. Chem. Phys. [Online]. 137(8) (2012, Aug.) 084104-084111. Available: https://doi.org/10.1063/1.4746757
[19] M. Brack, The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. [Online]. 65(3) (1993, Sep) 677-732. Available: https://doi.org/10.1103/RevModPhys.65.677
[20] W.A. De Heer, The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. [Online]. 65(3) (1993, Sep) 611-615. Available: https://doi.org/10.1103/RevModPhys.65.611
[21] K.S. John, K. Feyisayo, Air pollution by carbon monoxide (CO) poisonous gas in Lagos Area Southwestern Nigeria. J. Atmos. Clim. Sci. [Online]. 3(4) (2013, Aug.) 510-514. Available: http://dx.doi.org/10.4236/acs.2013.34053
[22] L. Wu, R. Wang, Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. J. Pharmacol. Rev. [Online]. 57(4) (2005, Dec.) 585-630. Available: https://doi.org/10.1124/pr.57.4.3
[23] A. Nakao, H. Toyokawa, A. Tsung, M. Nalesnik, D. Stolz, J. Kohmoto, A. Ikeda, K. Tomiyama, T. Harada, T. Takahashi, Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am. J. Transplant. [Online]. 6(10) (2006, Jul.) 2243-2255. Available: https://doi.org/10.1111/j.1600-6143.2006.01465.x
[24] R. Motterlini, L.E. Otterbein, The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. [Online]. 9 (2010, Sep) 728-743. Available: https://doi.org/10.1038/nrd3228
[25] J. Haggarty, K.E. Burgess, Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr. Opin. Biotech. [Online]. 43 (2017, Feb.) 77-85. Available: https://doi.org/10.1016/j.copbio.2016.09.006
16 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
[26] A. Masek, E. Chrzescijanska, M. Latos, A. Kosmalska, Electrochemical and Spectrophotometric Characterization of the Propolis Antioxidants Properties. Int. J. Electrochem. Sci. [Online]. 14 (2019, Jan.) 1231-1247. Available: https://doi.org/10.20964/2019.02.66
[27] A.M. Pisoschi, G.P. Negulescu, Methods for total antioxidant activity determination: a review. Biochem Anal Biochem. [Online]. 1(1) (2011, Oct) 106-115. Available: http://dx.doi.org/10.4172/2161-1009.1000106
[28] J.-S. Noh, J.M. Lee, W. Lee, Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors. [Online]. 11(1) (2011, Jan.) 825-851. Available: https://doi.org/10.3390/s110100825
[29] S. Korniy, V. Pokhmurskii, V. Kopylets, A theoretical study of CO adsorption on Pt–Me (Me–Fe, Co, Ni) nanoclusters. J. Thermodyn. Catal. [Online]. 7(2) (2016, Jun.) 169-172. Available: http://dx.doi.org/10.4172/2157-7544.1000169
[30] M. Lu, R. Huang, W. Xu, J. Wu, M. Fu, L. Chen, D. Ye, Competitive Adsorption of O2 and Toluene on the Surface of FeOx/SBA-15 Catalyst. Aerosol Air Qual Res. [Online]. 17(9) (2017, Sep.) 2310-2316. Available: https://doi.org/10.4209/aaqr.2016.05.0186
[31] A.K. Mishra, A. Roldan, N.H. de Leeuw, A density functional theory study of the adsorption behaviour of CO2 on Cu2O surfaces. J. Chem. Phys. [Online]. 145(4) (2016, Jul.) 044709-044721. Available: https://doi.org/10.1063/1.4958804
[32] J. Schnadt, J. Knudsen, X.L. Hu, A. Michaelides, R.T. Vang, K. Reuter, Z. Li, E. Lægsgaard, M. Scheffler, F. Besenbacher, Experimental and theoretical study of oxygen adsorption structures on Ag (111). Phys. Rev. B. [Online]. 80(7) (2009, Aug.) 075424-075435. Available: https://doi.org/10.1103/PhysRevB.80.075424
[33] B. Wanno, C. Tabtimsai, A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets. Superlattices Microstruct. [Online]. 67 (2014, Mar.) 110-117. Available: https://doi.org/10.1016/j.spmi.2013.12.025
Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures … * 17
[34] F. Azimi, E. Tazikeh-Lemeski, F. Kaveh, M. Monajjemi, Optoelectronical Properties of a Metalloid-Doped B12N12 Nano-Cage. J. Optoelectron. Nanostructures. [Online]. 5(1) (2020, Mar.) 101-119. Available: http://journals.miau.ac.ir/article_4036.html
[35] H.A. Al-Abadleh, V. Grassian, FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir. [Online]. 19(2) (2002, Dec.) 341-347. Available: https://doi.org/10.1021/la026208a
[36] J.-K. Chen, S.-M. Yang, B.-H. Li, C.-H. Lin, S. Lee, Fluorescence quenching investigation of methyl red adsorption on aluminum-based metal–organic frameworks. Langmuir. [Online]. 34(4) (2018, Jan.) 1441-1446. Available: https://doi.org/10.1021/acs.langmuir.7b04240
[37] X.-J. Kuang, X.-Q. Wang, G.-B. Liu, A density functional study on the adsorption of hydrogen molecule onto small copper clusters. J. Chem. Sci. [Online]. 123 (2011, Sep.) 743-754. Available: https://doi.org/10.1007/s12039-011-0130-3
[38] Q.-M. Ma, Z. Xie, J. Wang, Y. Liu, Y.-C. Li, Structures, binding energies and magnetic moments of small iron clusters: A study based on all-electron DFT. Solid State Commun. [Online]. 142(1) (2007, Apr.) 114-119. Available: https://doi.org/10.1016/j.ssc.2006.12.023
[39] R. Hussain, A.I. Hussain, S.A.S. Chatha, A. Mansha, K. Ayub, Density functional theory study of geometric and electronic properties of full range of bimetallic AgnYm (n+ m= 10) clusters. J. Alloys Compd. [Online]. 705 (2017, May.) 232-246. Available: https://doi.org/10.1016/j.jallcom.2017.02.008
[40] S.F. Matar, DFT study of hydrogen instability and magnetovolume effects in CeNi. Solid State Sci. [Online]. 12(1) (2010, Jan.) 59-64. Available: https://doi.org/10.1016/j.solidstatesciences.2009.10.003
[41] S.J. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals. J. Optoelectron. Nanostructures. [Online]. 2(4) (2017, Dec.) 1-18. Available: http://journals.miau.ac.ir/article_2570.html
[42] H. Salehi, Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X= S, Se) compounds. J.
18 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
Optoelectron. Nanostructures. [Online]. 3(2) (2018, Jun.) 53-64. Available: http://jopn.miau.ac.ir/article_2864.html
[43] S. Fotoohi, S. Haji Nasiri, Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon. J. Optoelectron. Nanostructures. [Online]. 4(4) (2019, Dec.) 15-38. Available: http://jopn.miau.ac.ir/article_3754.html
[44] M. Askaripour Lahiji, A. Abdolahzadeh Ziabari, Ab–initio study of the electronic and optical traits of Na0. 5Bi0. 5TiO3 nanostructured thin film. J. Optoelectron. Nanostructures. [Online]. 4(3) (2019, Sep.) 47-58. Available: http://jopn.miau.ac.ir/article_3619.html
[45] F. Weinhold, C.R. Landis, Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract. [Online]. 2(2) (2001, May.) 91-104. Available: https://doi.org/10.1039/B1RP90011K
[46] S.J. Mousavi, Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization. J. Optoelectron. Nanostructures. [Online]. 5(4) (2020, Dec.) 111-122. Available: http://jopn.miau.ac.ir/article_4512.html
[47] F. Biegler‐König, J. Schönbohm, Update of the AIM2000‐program for atoms in molecules. J. Comput. Chem. [Online]. 23(15) (2002, Nov.) 1489-1494. Available: https://doi.org/10.1002/jcc.10085
[48] R.D. Dennington, T.A. Keith, J.M. Millam, GaussView 5.0. 8, Gaussian Inc, 340 (2008).
[49] M.R. Dehghan, S. Ahmadi, Z.M. Kotena, M. Niakousari, Adsorption of oxygen molecule on aromatic magnesium nanoclusters with centrality of Be, Mg, and Ca: a DFT study (peer review).
[50] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. [Online]. 393(1) (2004, Jul.) 51-57. Available: https://doi.org/10.1016/j.cplett.2004.06.011
[51] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision B.01, (Gaussian, Inc., Wallingford, CT, 2009).
Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures … * 19
[52] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. [Online]. 19(4) (1970, Jun.) 553-566. Available: https://doi.org/10.1080/00268977000101561
[53] N.M. O'boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package‐independent computational chemistry algorithms. J. Comput. Chem. [Online]. 29(5) (2008, Apr.) 839-845. Available: https://doi.org/10.1002/jcc.20823
[54] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. [Online]. 33(5) (2012, Feb.) 580-592. Available: https://doi.org/10.1002/jcc.22885
[55] M. Shahabi, H. Raissi, Investigation of the molecular structure, electronic properties, AIM, NBO, NMR and NQR parameters for the interaction of Sc, Ga and Mg-doped (6, 0) aluminum nitride nanotubes with COCl 2 gas by DFT study. J Incl Phenom Macro. [Online]. 84 (2016, Feb.) 99-114. Available: https://doi.org/10.1007/s10847-015-0587-7
[56] R.F. Bader, Atoms in molecules. Acc. Chem. Res. [Online]. 18(1) (1985, Jan.) 9-15. Available: https://doi.org/10.1021/ar00109a003
[57] M.D. Esrafili, H. Behzadi, A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. J. Struct. Chem. [Online]. 24 (2013, Apr.) 573-581. Available: https://doi.org/10.1007/s11224-012-0110-3
[58] I. Rozas, I. Alkorta, J. Elguero, Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. [Online]. 122(45) (2000, Nov.) 11154-11161. Available: https://doi.org/10.1021/ja0017864
[59] S. Ahmadi, V. ManickamAchari, Z. Hussain, R. Hashim, Epimeric and anomeric relationship of octyl-α-D-gluco/galactosides: Insight from density functional theory and atom in molecules studies. Comput. Theor. Chem. [Online]. 1108(15) (2017, May.) 93-102. Available: https://doi.org/10.1016/j.comptc.2017.03.023
[60] S. Ahmadi, V.M. Achari, H. Nguan, R. Hashim, Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous
20 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
bilayers: effect of the anomeric and epimeric configurations. J. Mol. Model. [Online]. 20 (2014, Mar.) 2165. Available: https://doi.org/10.1007/s00894-014-2165-0
[61] R.G. Pearson, Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. [Online]. 54(6) (1989, Mar.) 1423-1430. Available: https://doi.org/10.1021/jo00267a034
[62] Z. Zhou, R.G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc. [Online]. 112(15) (1990, Jul.) 5720-5724. Available: https://doi.org/10.1021/ja00171a007
[63] R.G. Parr, P.K. Chattaraj, Principle of maximum hardness. J. Am. Chem. Soc. [Online]. 113(5) (1991, Feb.) 1854-1855. Available: https://doi.org/10.1021/ja00005a072
[64] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. [Online]. 105(26) (1983, Dec.) 7512-7516. Available: https://doi.org/10.1021/ja00364a005
[65] R.G. Pearson, Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc. [Online]. 107(24) (1985, Nov.) 6801-6806. Available: https://doi.org/10.1021/ja00310a009