Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2)orthorhombic Polymorphs: DFT Study
Subject Areas : Journal of Optoelectronical NanostructuresTahereh Niazkar 1 , Gholamabbas Shams 2 * , zahra soltani 3
1 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: DFT, BaZn2As2, Thermoelectric properties,
Abstract :
Based on the calculations of density functional theory
and Generalized Gradient approximation (GGA),
mechanical, electronic, optical and thermoelectric
properti BaFe2-xZnxAs2 (x=0,1,2) have been investigated
in orthorhombic phase. For all three BaFe2-xZnxAs2
(x=0,1,2), the energy curves have an equilibrium point in
terms of their volume. For x=1 and x=2, the bonds take
on an ionic shape. Electronic calculations show that by
applying the modified Becke-Johonsom (mBJ)
approximation, the x=2 compound is converted to a ptype
semiconductor with a gap of 0.11 eV. However,
magnetic behavior can be seen for the other two
impurities. At x=2, the band structure illustrates a direct
gap. Optical diagrams display that the parts of the
dielectric function exhibit strong metallic behavior for
impurities x=0, 1, and also an optical gap can be detected.
Moreover, the Seebeck coefficient provides that a good
stability is observed in its behavior at room temperature
onwards to reach the saturation limit of 200 μvK-1.
Additionally, the figure of merit reaches a saturation limit
in the range of 0.6 to 0.7 at this temperature range.
[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu , Superconductivity at 39 K in magnesium diboride. Nature Phys. Rev. 47, 777-780.410, (2001) 63-64.
[2] W.L. McMillan, Transition Temperature of Strong-coupled superconductors. Phys. Rev. 167, (1968) 331-344.
[3] Y. Kamihara, T. Watanabe, M. Hirano, H. J. Am. Hosono, Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. Chem. Soc, 160, (2008) 3296.
[4] I.R. Shein, A.L. Ivanovskii, Elastic, electronic properties and intra-atomic bonding in orthorhombicand tetragonal polymorphs of BaZn2As2 from first-principles calculations, Journal of Alloys and Compounds 583 , (2014) 100–105.
[5] I. Zutic, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, (2004) 323.
[6] H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V.A. Dinh,P.H. Dederichs, Theory of ferromagnetic semiconductors,Phys. Stat. Sol. (a) 204, (2007) 15.
[7] A. L .Ivanovskii , Magnetic effects induced by sp impurities and defects in nonmagnetic sp materials, Phys.-Usp. 50, (2007) 1031.
[8] T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides, Nature Mater. 9, (2010) 965.
[9].Bardeen. J, Cooper. N. L, Scherieffer, Theory of dirty superconductors, Phys. Rev. 108. (1957) 1175.
[10] Y. Kamihara , T . Watanabe, M. Hirano, H. Hosono,” Iron-Based Layered Superconductor: LaOFe J. Am Chem. Soc., 130,11,(2008) 3296_ 3297.
[11] J.H. Tapp, Z.J. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy,LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K. Phys. Rev. B 78, (2008) 060505.
[12] Q. Huang, Y. Qiu, W. Bao, M.A. Green, J.W. Lynn, Y.C. Gasparovic, T. Wu, G. Wu, X.H. Chen, Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors, Phys. Rev. Lett 101 (2008) 257003.
Doi: https://doi.org/10.1103/PhysRevLett.101.257003
[13] X. H .Chen, T .Wu, G. Wu, R .H. L iu, H .Chen, D .F. Fang, Superconductivity at 43 K in SmFeAsO1-xF x Nature 453(7196) , (2008) 761-762.
[14] G .F. Chen, Z.Li, D.Wu, G.Li, W.Z.Hu, J.Donng, P.Zheng,J.L.Luo, N.L.Wang , Superconductivity at 41 K and its competition with spin-density-wave instability inlayered CeO1−xFxFeAs Phys. Rev. Lett. 100 (2008) 247002. Doi: https://www.doi.org/10.1103/PhysRevLett.100.247002
[15] W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (31) ,(1996) 12974–12980.
[16] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (4A) ,(1965) A1133.
[17] P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (2) (1990) 399–415.
[18] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, , An augmented plane wave+ local orbitals program for calculating crystal properties. Phys. Rev. B 64, (2001) 195134.
[19] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, (1996) 3865.
[20] A. Rajabpour, L. Seidabadi, M. Soltanpour, Calculating the Bulk Modulus of Iron and Steel Using Equilibrium Molecular Dynamics Simulation, Procedia Materials Science 11, ( 2015 ) 391 – 396
[21] N. Amani, M. Hantehzadeh, H. Akbari, A. Boochani, Electronic, optical and thermoelectric properties of the WS2–GaN interfaces: a DFT study,International Nano Lettersvolume 10, (2020) 249–261.
[22] S. Lemal, F. Ricci, D. I. Bilc, M.J. Verstraete, P.Ghosez, Magnetic instabilities in doped Fe2YZ full-Heusler thermoelectric compounds, Physics Review B 100, (2019) 161201.
[23] S. D. Guo, L. Qiu, Thermoelectric properties of topological insulator BaSn2, J. Phys. D Appl. Phys. 50, (2017) 015101.
[24] D.K. Ko, Y.J. Keng, C.B. Murray, Enhanced thermopower via carrier energy filtering in solution-processablePt–Sb2Te3 nanocomposites, Nano Lett. 11, (2011) 2841.
[25] L. Muchler, F. Casper, B. Yan, S. Chadov, C. Felser, Frontispiece, topological insulators and thermoelectric materials, Phys. Status Solidi RRL 7, (2013) 91–100.
[26] Y.V. Ivanov, A.T. Burkov, D.A. Pshenay-Severin, Thermoelectri properties of topological insulators, Phys. Status Solidi B 255.7, (2018) 1800020.
[27] Hai-Long Sunet Al, Remarkably High Thermoelectric Efficiencies of the Half-HeuslerCompounds BXGa (X = Be, Mg, and Ca), ACS Appl. Mater. Interfaces 12 (2020) 5838−584.
[28] Q. Y. Xue, H. J.Liu, D. D. Fan, ,L. Cheng, B. Y. Zhao, J. Shi . LaPtSb, A Half-Heusler Compound with High Thermoelectric Performance. Phys. Chem. Chem. Phys. 18 (2016) 17912−17916.
[29] M. Hong, T.Wang, T.Feng, Q.Sun, Xu. SMatsumura, S.Pantelides, S. T. Zou, J,Chen, Z.-G, Strong Phonon-Phonon Interactions Securing Extraordinary Thermoelectric Ge 1-x SbxTe with Zn-Alloying-Induced Band Alignment. J. Am. Chem. Soc. 141, (2019) 1742−1748.
[30] D. LI. Guo, C. Li, K. Shao, B.Chen, D. Ma, Y. Sun, J. Zeng, W, The Anisotropic Thermoelectricity Property of AgBi3S5 by First- Principles Study. J. Alloys Comp.773, (2019) 812−818.
[31] Z. J. Yang, T.J. Antosiewicz, T. Shegai, Role of materia Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Phys. 24, 18, (2016) 20373-20381.
[32] R. yahyazadeh, Z. Hashempour, Effect of Hydrostatic Pressure on Optical Absorption, 6(2), (2021) 1-22.
[33] S. Damizadeh, M. Nayeri, F.Kalantari Fotooh, S. Fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study, 5(4), (2020) 67-76.
[34] M.Saberi Lamraski,S. Babaee, S.M.Pourmortazavi, Study of Optical Properties, Thermal Kinetic Decomposition and Stability of Coated PETN-Litholrubine nano-Composite via Solvent/None-Solvent Method Using Taguchi Experimental Design, 4, ( 2019) 11-15.
[35] S. J. Mousavi, First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals Received. 2(4),( 2017) 1-18.
[36] M.R. Mohebbifar, M. Zohrabi, Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation, 4(4) )2019) 65-80.